4 resultados para Runoff

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus (P) is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change. © 2010 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) analysis to compare current and future climate model predictions on a country level. We then compare our calculations of climate change exposure for each nation to several metrics of political and economic well-being. Our results indicate that the impacts of changes in precipitation and runoff are distributed relatively equally between developed and developing nations. In contrast, we confirm research suggesting that developing nations will be affected far more severely by changes in temperature than developed nations. Our results also suggest that this unequal impact will persist throughout the twenty-first century. Our analysis further indicates that the most significant temperature changes will occur in politically unstable countries, creating an additional motivation for developed countries to actively engage with developing nations on climate mitigation strategies. © 2011, Mary Ann Liebert, Inc.