2 resultados para Running Speed
em Duke University
Resumo:
The lateral septum is associated with the regulation of innate behavior, motivation, and locomotion. Its complex interconnections with cognitive and affective regions such as the hippocampus, hypothalamus, and medial septum have made it an attractive region for studying how motivation regulates behavior in context-specific settings. This GABAergic brain region’s main output is the lateral hypothalamus, which provides downstream signaling of motor commands. Even though stimulation of lateral septum projections to the hypothalamus have shown to decrease running speed in free behaving mice, characterizing movement kinematics due to LS activation has not been studied. GABAergic medium spiny neurons of the lateral septum were selectively activated through the use of optogenetic techniques in transgenic mice. Photostimulation of the lateral septum at theta frequencies caused a non-significant decrease in head and back speed. 3D motion analysis of body movement under photostimulation was quantified, revealing a slow, linear decrease of body speed as photostimulation progressed. These results support the role of lateral septum activation in movement regulation and shed light on the specific manner in which stimulation of the LS gradually decreases movement speed.
Resumo:
Simultaneous measurements of high-altitude optical emissions and magnetic fields produced by sprite-associated lightning discharges enable a close examination of the link between low-altitude lightning processes and high-altitude sprite processes. We report results of the coordinated analysis of high-speed sprite video and wideband magnetic field measurements recorded simultaneously at Yucca Ridge Field Station and Duke University. From June to August 2005, sprites were detected following 67 lightning strokes, all of which had positive polarity. Our data showed that 46% of the 83 discrete sprite events in these sequences initiated more than 10 ms after the lightning return stroke, and we focus on these delayed sprites in this work. All delayed sprites were preceded by continuing current moments that averaged at least 11 kA km between the return stroke and sprites. The total lightning charge moment change at sprite initiation varied from 600 to 18,600 C km, and the minimum value to initiate long-delayed sprites ranged from 600 for 15 ms delay to 2000 C km for more than 120 ms delay. We numerically simulated electric fields at altitudes above these lightning discharges and found that the maximum normalized electric fields are essentially the same as fields that produce short-delayed sprites. Both estimated and simulation-predicted sprite initiation altitudes indicate that long-delayed sprites generally initiate around 5 km lower than short-delayed sprites. The simulation results also reveal that slow (5-20 ms) intensifications in continuing current can play a major role in initiating delayed sprites. Copyright 2008 by the American Geophysical Union.