2 resultados para Routine formulas

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insecticide-treated nets (ITNs) are one of the most important and cost-effective tools for malaria control. Maximizing individual and community benefit from ITNs requires high population-based coverage. Several mechanisms are used to distribute ITNs, including health facility-based targeted distribution to high-risk groups; community-based mass distribution; social marketing with or without private sector subsidies; and integrating ITN delivery with other public health interventions. The objective of this analysis is to describe bednet coverage in a district in western Kenya where the primary mechanism for distribution is to pregnant women and infants who attend antenatal and immunization clinics. We use data from a population-based census to examine the extent of, and factors correlated with, ownership of bednets. We use both multivariable logistic regression and spatial techniques to explore the relationship between household bednet ownership and sociodemographic and geographic variables. We show that only 21% of households own any bednets, far lower than the national average, and that ownership is not significantly higher amongst pregnant women attending antenatal clinic. We also show that coverage is spatially heterogeneous with less than 2% of the population residing in zones with adequate coverage to experience indirect effects of ITN protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.