2 resultados para Rotating Cilinder.

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central dogma of molecular biology relies on the correct Watson-Crick (WC) geometry of canonical deoxyribonucleic acid (DNA) dG•dC and dA•dT base pairs to replicate and transcribe genetic information with speed and an astonishing level of fidelity. In addition, the Watson-Crick geometry of canonical ribonucleic acid (RNA) rG•rC and rA•rU base pairs is highly conserved to ensure that proteins are translated with high fidelity. However, numerous other potential nucleobase tautomeric and ionic configurations are possible that can give rise to entirely new pairing modes between the nucleotide bases. Very early on, James Watson and Francis Crick recognized their importance and in 1953 postulated that if bases adopted one of their less energetically disfavored tautomeric forms (and later ionic forms) during replication it could lead to the formation of a mismatch with a Watson-Crick-like geometry and could give rise to “natural mutations.”

Since this time numerous studies have provided evidence in support of this hypothesis and have expanded upon it; computational studies have addressed the energetic feasibilities of different nucleobases’ tautomeric and ionic forms in siico; crystallographic studies have trapped different mismatches with WC-like geometries in polymerase or ribosome active sites. However, no direct evidence has been given for (i) the direct existence of these WC-like mismatches in canonical DNA duplex, RNA duplexes, or non-coding RNAs; (ii) which, if any, tautomeric or ionic form stabilizes the WC-like geometry. This thesis utilizes nuclear magnetic resonance (NMR) spectroscopy and rotating frame relaxation dispersion (R1ρ RD) in combination with density functional theory (DFT), biochemical assays, and targeted chemical perturbations to show that (i) dG•dT mismatches in DNA duplexes, as well as rG•rU mismatches RNA duplexes and non-coding RNAs, transiently adopt a WC-like geometry that is stabilized by (ii) an interconnected network of rapidly interconverting rare tautomers and anionic bases. These results support Watson and Crick’s tautomer hypothesis, but additionally support subsequent hypotheses invoking anionic mismatches and ultimately tie them together. This dissertation shows that a common mismatch can adopt a Watson-Crick-like geometry globally, in both DNA and RNA, and whose geometry is stabilized by a kinetically linked network of rare tautomeric and anionic bases. The studies herein also provide compelling evidence for their involvement in spontaneous replication and translation errors.