6 resultados para Role Models
em Duke University
Resumo:
Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.
Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.
Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.
Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.
These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.
Resumo:
The ABL family of non-receptor tyrosine kinases, ABL1 (also known as c-ABL) and ABL2 (also known as Arg), links diverse extracellular stimuli to signaling pathways that control cell growth, survival, adhesion, migration and invasion. ABL tyrosine kinases play an oncogenic role in human leukemias. However, the role of ABL kinases in solid tumors including breast cancer progression and metastasis is just emerging.
To evaluate whether ABL family kinases are involved in breast cancer development and metastasis, we first analyzed genomic data from large-scale screen of breast cancer patients. We found that ABL kinases are up-regulated in invasive breast cancer patients and high expression of ABL kinases correlates with poor prognosis and early metastasis. Using xenograft mouse models combined with genetic and pharmacological approaches, we demonstrated that ABL kinases are required for regulating breast cancer progression and metastasis to the bone. Using next generation sequencing and bioinformatics analysis, we uncovered a critical role for ABL kinases in promoting multiple oncogenic pathways including TAZ and STAT5 signaling networks and the epithelial to mesenchymal transition (EMT). These findings revealed a role for ABL kinases in regulating breast cancer tumorigenesis and bone metastasis and provide a rationale for targeting breast tumors with ABL-specific inhibitors.
Resumo:
Soil erosion by water is a major driven force causing land degradation. Laboratory experiments, on-site field study, and suspended sediments measurements were major fundamental approaches to study the mechanisms of soil water erosion and to quantify the erosive losses during rain events. The experimental research faces the challenge to extent the result to a wider spatial scale. Soil water erosion modeling provides possible solutions for scaling problems in erosion research, and is of principal importance to better understanding the governing processes of water erosion. However, soil water erosion models were considered to have limited value in practice. Uncertainties in hydrological simulations are among the reasons that hindering the development of water erosion model. Hydrological models gained substantial improvement recently and several water erosion models took advantages of the improvement of hydrological models. It is crucial to know the impact of changes in hydrological processes modeling on soil erosion simulation.
This dissertation work first created an erosion modeling tool (GEOtopSed) that takes advantage of the comprehensive hydrological model (GEOtop). The newly created tool was then tested and evaluated at an experimental watershed. The GEOtopSed model showed its ability to estimate multi-year soil erosion rate with varied hydrological conditions. To investigate the impact of different hydrological representations on soil erosion simulation, a 11-year simulation experiment was conducted for six models with varied configurations. The results were compared at varied temporal and spatial scales to highlight the roles of hydrological feedbacks on erosion. Models with simplified hydrological representations showed agreement with GEOtopSed model on long temporal scale (longer than annual). This result led to an investigation for erosion simulation at different rainfall regimes to check whether models with different hydrological representations have agreement on the soil water erosion responses to the changing climate. Multi-year ensemble simulations with different extreme precipitation scenarios were conducted at seven climate regions. The differences in erosion simulation results showed the influences of hydrological feedbacks which cannot be seen by purely rainfall erosivity method.
Resumo:
Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.
Resumo:
Background: Organophosphate (OP) pesticides are well-known developmental neurotoxicants that have been linked to abnormal cognitive and behavioral endpoints through both epidemiological studies and animal models of behavioral teratology, and are implicated in the dysfunction of multiple neurotransmitters, including dopamine. Chemical similarities between OP pesticides and organophosphate flame retardants (OPFRs), a class of compounds growing in use and environmental relevance, have produced concern regarding whether developmental exposures to OPFRs and OP pesticides may share behavioral outcomes, impacts on dopaminergic systems, or both. Methods: Using the zebrafish animal model, we exposed developing fish to two OPFRs, TDCIPP and TPHP, as well as the OP pesticide chlorpyrifos, during the first 5 days following fertilization. From there, the exposed fish were assayed for behavioral abnormalities and effects on monoamine neurochemistry as both larvae and adults. An experiment conducted in parallel examined how antagonism of the dopamine system during an identical window of development could alter later life behavior in the same assays. Finally, we investigated the interaction between developmental exposure to an OPFR and acute dopamine antagonism in larval behavior. Results: Developmental exposure to all three OP compounds altered zebrafish behavior, with effects persisting into adulthood. Additionally, exposure to an OPFR decreased the behavioral response to acute D2 receptor antagonism in larvae. However, the pattern of behavioral effects diverged substantially from those seen following developmental dopamine antagonism, and the investigations into dopamine neurochemistry were too variable to be conclusive. Thus, although the results support the hypothesis that OPFRs, as with OP pesticides such as chlorpyrifos, may present a risk to normal behavioral development, we were unable to directly link these effects to any dopaminergic dysfunction.
Resumo:
Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.