2 resultados para Response topography

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dorsomedial prefrontal cortex (DMPFC) plays a central role in aspects of cognitive control and decision making. Here, we provide evidence for an anterior-to-posterior topography within the DMPFC using tasks that evoke three distinct forms of control demands--response, decision, and strategic--each of which could be mapped onto independent behavioral data. Specifically, we identify three spatially distinct regions within the DMPFC: a posterior region associated with control demands evoked by multiple incompatible responses, a middle region associated with control demands evoked by the relative desirability of decision options, and an anterior region that predicts control demands related to deviations from an individual's preferred decision-making strategy. These results provide new insight into the functional organization of DMPFC and suggest how recent controversies about its role in complex decision making and response mapping can be reconciled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current strategies to limit macrophage adhesion, fusion and fibrous capsule formation in the foreign body response have focused on modulating material surface properties. We hypothesize that topography close to biological scale, in the micron and nanometric range, provides a passive approach without bioactive agents to modulate macrophage behavior. In our study, topography-induced changes in macrophage behavior was examined using parallel gratings (250 nm-2 mum line width) imprinted on poly(epsilon-caprolactone) (PCL), poly(lactic acid) (PLA) and poly(dimethyl siloxane) (PDMS). RAW 264.7 cell adhesion and elongation occurred maximally on 500 nm gratings compared to planar controls over 48 h. TNF-alpha and VEGF secretion levels by RAW 264.7 cells showed greatest sensitivity to topographical effects, with reduced levels observed on larger grating sizes at 48 h. In vivo studies at 21 days showed reduced macrophage adhesion density and degree of high cell fusion on 2 mum gratings compared to planar controls. It was concluded that topography affects macrophage behavior in the foreign body response on all polymer surfaces examined. Topography-induced changes, independent of surface chemistry, did not reveal distinctive patterns but do affect cell morphology and cytokine secretion in vitro, and cell adhesion in vivo particularly on larger size topography compared to planar controls.