7 resultados para Reservoir volume

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the behavior of equity trading volume and volatility for the individual firms composing the Standard & Poor's 100 composite index. Using multivariate spectral methods, we find that fractionally integrated processes best describe the long-run temporal dependencies in both series. Consistent with a stylized mixture-of-distributions hypothesis model in which the aggregate "news"-arrival process possesses long-memory characteristics, the long-run hyperbolic decay rates appear to be common across each volume-volatility pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses dynamic impulse response analysis to investigate the interrelationships among stock price volatility, trading volume, and the leverage effect. Dynamic impulse response analysis is a technique for analyzing the multi-step-ahead characteristics of a nonparametric estimate of the one-step conditional density of a strictly stationary process. The technique is the generalization to a nonlinear process of Sims-style impulse response analysis for linear models. In this paper, we refine the technique and apply it to a long panel of daily observations on the price and trading volume of four stocks actively traded on the NYSE: Boeing, Coca-Cola, IBM, and MMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring the entorhinal cortex (ERC) is challenging due to lateral border discrimination from the perirhinal cortex. From a sample of 39 nondemented older adults who completed volumetric image scans and verbal memory indices, we examined reliability and validity concerns for three ERC protocols with different lateral boundary guidelines (i.e., Goncharova, Dickerson, Stoub, & deToledo-Morrell, 2001; Honeycutt et al., 1998; Insausti et al., 1998). We used three novice raters to assess inter-rater reliability on a subset of scans (216 total ERCs), with the entire dataset measured by one rater with strong intra-rater reliability on each technique (234 total ERCs). We found moderate to strong inter-rater reliability for two techniques with consistent ERC lateral boundary endpoints (Goncharova, Honeycutt), with negligible to moderate reliability for the technique requiring consideration of collateral sulcal depth (Insausti). Left ERC and story memory associations were moderate and positive for two techniques designed to exclude the perirhinal cortex (Insausti, Goncharova), with the Insausti technique continuing to explain 10% of memory score variance after additionally controlling for depression symptom severity. Right ERC-story memory associations were nonexistent after excluding an outlier. Researchers are encouraged to consider challenges of rater training for ERC techniques and how lateral boundary endpoints may impact structure-function associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To compare the predictive performance and potential clinical usefulness of risk calculators of the European Randomized Study of Screening for Prostate Cancer (ERSPC RC) with and without information on prostate volume. METHODS: We studied 6 cohorts (5 European and 1 US) with a total of 15,300 men, all biopsied and with pre-biopsy TRUS measurements of prostate volume. Volume was categorized into 3 categories (25, 40, and 60 cc), to reflect use of digital rectal examination (DRE) for volume assessment. Risks of prostate cancer were calculated according to a ERSPC DRE-based RC (including PSA, DRE, prior biopsy, and prostate volume) and a PSA + DRE model (including PSA, DRE, and prior biopsy). Missing data on prostate volume were completed by single imputation. Risk predictions were evaluated with respect to calibration (graphically), discrimination (AUC curve), and clinical usefulness (net benefit, graphically assessed in decision curves). RESULTS: The AUCs of the ERSPC DRE-based RC ranged from 0.61 to 0.77 and were substantially larger than the AUCs of a model based on only PSA + DRE (ranging from 0.56 to 0.72) in each of the 6 cohorts. The ERSPC DRE-based RC provided net benefit over performing a prostate biopsy on the basis of PSA and DRE outcome in five of the six cohorts. CONCLUSIONS: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider multiple factors, including an estimate of prostate volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p  <  0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p  <  0.01), and an insignificant (p  >  0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.