4 resultados para Research Subject Categories::TECHNOLOGY::Civil engineering and architecture::Other civil engineering and architecture

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bycatch reduction technology (BRT) modifies fishing gear to increase selectivity and avoid capture of non-target species, or to facilitate their non-lethal release. As a solution to fisheries-related mortality of non-target species, BRT is an attractive option; effectively implemented, BRT presents a technical 'fix' that can reduce pressure for politically contentious and economically detrimental interventions, such as fisheries closures. While a number of factors might contribute to effective implementation, our review of BRT literature finds that research has focused on technical design and experimental performance of individual technologies. In contrast, and with a few notable exceptions, research on the human and institutional context of BRT, and more specifically on how fishers respond to BRT, is limited. This is not to say that fisher attitudes are ignored or overlooked, but that incentives for fisher uptake of BRT are usually assumed rather than assessed or demonstrated. Three assumptions about fisher incentives dominate: (1) economic incentives will generate acceptance of BRT; (2) enforcement will generate compliance with BRT; and (3) 'participation' by fishers will increase acceptance and compliance, and overall support for BRT. In this paper, we explore evidence for and against these assumptions and situate our analysis in the wider social science literature on fisheries. Our goal is to highlight the need and suggest focal areas for further research. © Inter-Research 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.

This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.

Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.

Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Market failures associated with environmental pollution interact with market failures associated with the innovation and diffusion of new technologies. These combined market failures provide a strong rationale for a portfolio of public policies that foster emissions reduction as well as the development and adoption of environmentally beneficial technology. Both theory and empirical evidence suggest that the rate and direction of technological advance is influenced by market and regulatory incentives, and can be cost-effectively harnessed through the use of economic-incentive based policy. In the presence of weak or nonexistent environmental policies, investments in the development and diffusion of new environmentally beneficial technologies are very likely to be less than would be socially desirable. Positive knowledge and adoption spillovers and information problems can further weaken innovation incentives. While environmental technology policy is fraught with difficulties, a long-term view suggests a strategy of experimenting with policy approaches and systematically evaluating their success. © 2005 Elsevier B.V. All rights reserved.