19 resultados para Reptiles, Fossil
em Duke University
Resumo:
Primate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals.
Resumo:
© 2016 Elsevier Ltd.The early Miocene Santa Cruz Formation (SCF) in southern Patagonia hosts the Santacrucian South American Land Mammal Age (SALMA), whose age is known mainly from exposures along the Atlantic coast. Zircon U-Pb ages were obtained from intercalated tuffs from four inland sections of the SCF: 17.36 ± 0.63 Ma for the westernmost Río Bote locality, and 17.04 ± 0.55 Ma-16.32 ± 0.62 Ma for central Río Santa Cruz localities. All ages agree with the bounding age of underlying marine units and with equivalent strata in coastal exposures. New ages and available sedimentation rates imply time spans for each section of ~18.2 to 17.36 Ma for Río Bote and 17.45-15.63 Ma for central Río Santa Cruz (Burdigalian). These estimates support the view that deposition of the SCF began at western localities ~1 Ma earlier than at eastern localities, and that the central Río Santa Cruz localities expose the youngest SCF in southern Santa Cruz Province. Associated vertebrate faunas are consistent with our geochronologic synthesis, showing older (Notohippidian) taxa in western localities and younger (Santacrucian) taxa in central localities. The Notohippidian fauna (19.0-18.0 Ma) of the western localities is synchronous with Pinturan faunas (19.0-18.0 Ma), but older than Santacrucian faunas of the Río Santa Cruz (17.2-15.6 Ma) and coastal localities (18.0-16.2 Ma). The Santacrucian faunas of the central Río Santa Cruz localities temporally overlap Colloncuran (15.7 Ma), Friasian (16.5 Ma), and eastern Santacrucian faunas.
Resumo:
UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.
Resumo:
BACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.
Resumo:
Paleoprimatologists depend on relationships between form and function of teeth to reconstruct the diets of fossil species. Most of this work has been limited to studies of unworn teeth. A new approach, dental topographic analysis, allows the characterization and comparison of worn primate teeth. Variably worn museum specimens have been used to construct species-specific wear sequences so that measurements can be compared by wear stage among taxa with known differences in diet. This assumes that individuals in a species tend to wear their molar teeth in similar ways, a supposition that has yet to be tested. Here we evaluate this assumption with a longitudinal study of changes in tooth form over time in primates. Fourteen individual mantled howling monkeys (Alouatta palliata) were captured and then recaptured after 2, 4, and 7 years when possible at Hacienda La Pacifica in Costa Rica between 1989-1999. Dental impressions were taken each time, and molar casts were produced and analyzed using dental topographic analysis. Results showed consistent decreases in crown slope and occlusal relief. In contrast, crown angularity, a measure of surface jaggedness, remained fairly constant except with extreme wear. There were no evident differences between specimens collected in different microhabitats. These results suggest that different individual mantled howling monkeys wear their teeth down in similar ways, evidently following a species-specific wear sequence. Dental topographic analysis may therefore be used to compare morphology among similarly worn individuals from different species.
Resumo:
Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.
Resumo:
We assess different policies for reducing carbon dioxide emissions and promoting innovation and diffusion of renewable energy. We evaluate the relative performance of policies according to incentives provided for emissions reduction, efficiency, and other outcomes. We also assess how the nature of technological progress through learning and research and development (R&D), and the degree of knowledge spillovers, affects the desirability of different policies. Due to knowledge spillovers, optimal policy involves a portfolio of different instruments targeted at emissions, learning, and R&D. Although the relative cost of individual policies in achieving reductions depends on parameter values and the emissions target, in a numerical application to the U.S. electricity sector, the ranking is roughly as follows: (1) emissions price, (2) emissions performance standard, (3) fossil power tax, (4) renewables share requirement, (5) renewables subsidy, and (6) R&D subsidy. Nonetheless, an optimal portfolio of policies achieves emissions reductions at a significantly lower cost than any single policy. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.
North atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles
Resumo:
Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5°C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3°C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5°C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.
Resumo:
A shearing quotient (SQ) is a way of quantitatively representing the Phase I shearing edges on a molar tooth. Ordinary or phylogenetic least squares regression is fit to data on log molar length (independent variable) and log sum of measured shearing crests (dependent variable). The derived linear equation is used to generate an 'expected' shearing crest length from molar length of included individuals or taxa. Following conversion of all variables to real space, the expected value is subtracted from the observed value for each individual or taxon. The result is then divided by the expected value and multiplied by 100. SQs have long been the metric of choice for assessing dietary adaptations in fossil primates. Not all studies using SQ have used the same tooth position or crests, nor have all computed regression equations using the same approach. Here we focus on re-analyzing the data of one recent study to investigate the magnitude of effects of variation in 1) shearing crest inclusion, and 2) details of the regression setup. We assess the significance of these effects by the degree to which they improve or degrade the association between computed SQs and diet categories. Though altering regression parameters for SQ calculation has a visible effect on plots, numerous iterations of statistical analyses vary surprisingly little in the success of the resulting variables for assigning taxa to dietary preference. This is promising for the comparability of patterns (if not casewise values) in SQ between studies. We suggest that differences in apparent dietary fidelity of recent studies are attributable principally to tooth position examined.
Resumo:
BACKGROUND: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS: We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. CONCLUSIONS: These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.
Resumo:
While the hominin fossil record cannot inform us on either the presence or extent of social and cognitive abilities that may have paved the way for the emergence of language, studying non-vocal communication among our closest living relatives, the African apes, may provide valuable information about how language originated. Although much has been learned from gestural signaling in non-human primates, we have not yet established how and why gestural repertoires vary across species, what factors influence this variation, and how knowledge of these differences can contribute to an understanding of gestural signaling's contribution to language evolution. In this paper, we review arguments surrounding the theory that language evolved from gestural signaling and suggest some important factors to consider when conducting comparative studies of gestural communication among African apes. Specifically, we propose that social dynamics and positional behavior are critical components that shape the frequency and nature of gestural signaling across species and we argue that an understanding of these factors could shed light on how gestural communication may have been the basis of human language. We outline predictions for the influence of these factors on the frequencies and types of gestures used across the African apes and highlight the importance of including these factors in future gestural communication research with primates.
Resumo:
© 2015 Elsevier Ltd.Sedimentological, ichnological and paleontological analyses of the Early Miocene uppermost Monte León Formation and the lower part of the Santa Cruz Formation were carried out in Rincón del Buque (RDB), a fossiliferous locality north of Río Coyle in Santa Cruz Province, Patagonia, Argentina. This locality is of special importance because it contains the basal contact between the Monte Léon (MLF) and the Santa Cruz (SCF) formations and because it preserves a rich fossil assemblage of marine invertebrates and marine trace fossils, and terrestrial vertebrates and plants, which has not been extensively studied. A ~90m-thick section of the MLF and the SCF that crops out at RDB was selected for this study. Eleven facies associations (FA) are described, which are, from base to top: subtidal-intertidal deposits with Crassotrea orbignyi and bioturbation of the Skolithos-Cruziana ichnofacies (FA1); tidal creek deposits with terrestrial fossil mammals and Ophiomorpha isp. burrows (FA2); tidal flat deposits with Glossifungites ichnofacies (FA3); deposits of tidal channels (FA4) and tidal sand flats (FA5) both with and impoverish Skolithos ichnofacies associated; marsh deposits (FA6); tidal point bar deposits recording a depauperate mixture of both the Skolithos and Cruziana ichnofacies (FA7); fluvial channel deposits (FA8); fluvial point bar deposits (FA9); floodplain deposits (FA10); and pyroclastic and volcaniclastic deposits of the floodplain where terrestrial fossil mammal remains occur (FA11).The transition of the MLF-SCF at RDB reflects a changing depositional environment from the outer part of an estuary (FA1) through the central (FA2-6) to inner part of a tide-dominated estuary (FA7). Finally a fluvial system occurs with single channels of relatively low energy and low sinuosity enclosed by a broad, low-energy floodplain dominated by partially edaphized ash-fall, sheet-flood, and overbank deposits (FA8-11). Pyroclastic and volcaniclastic materials throughout the succession must have been deposited as ash-fall distal facies in a fluvial setting and also were carried by fluvial streams and redeposited in both estuarine and fluvial settings. These materials preserve most of the analyzed terrestrial fossil mammals that characterize the Santacrucian age of the RDB's succession. Episodic sedimentation under volcanic influence, high sedimentation rates and a relatively warm and seasonal climate are inferred for the MLF and SCF section.Lateral continuity of the marker horizons at RDB serve for correlation with other coastal localities such as the lower part of the coastal SCF south of Río Coyle (~17.6-17.4Ma) belonging to the Estancia La Costa Member of the SCF.
Resumo:
A juvenile cranium of Homunculus patagonicus Ameghino, 1891a from the late Early Miocene of Santa Cruz Province (Argentina) provides the first evidence of developing cranial anatomy for any fossil platyrrhine. The specimen preserves the rostral part of the cranium with deciduous and permanent alveoli and teeth. The dental eruption sequence in the new specimen and a reassessment of eruption patterns in living and fossil platyrrhines suggest that the ancestral platyrrhine pattern of tooth replacement was for the permanent incisors to erupt before M(1), not an accelerated molar eruption (before the incisors) as recently proposed. Two genera and species of Santacrucian monkeys are now generally recognized: H. patagonicus Ameghino, 1891a and Killikaike blakei Tejedor et al., 2006. Taxonomic allocation of Santacrucian monkeys to these species encounters two obstacles: 1) the (now lost) holotype and a recently proposed neotype of H. patagonicus are mandibles from different localities and different geologic members of the Santa Cruz Formation, separated by approximately 0.7 million years, whereas the holotype of K. blakei is a rostral part of a cranium without a mandible; 2) no Santacrucian monkey with associated cranium and mandible has ever been found. Bearing in mind these uncertainties, our examination of the new specimen as well as other cranial specimens of Santacrucian monkeys establishes the overall dental and cranial similarity between the holotype of Killikaike blakei, adult cranial material previously referred to H. patagonicus, and the new juvenile specimen. This leads us to conclude that Killikaike blakei is a junior subjective synonym of H. patagonicus.
Resumo:
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.