1 resultado para Reinforcement Learning,resource-constrained devices,iOS devices,on-device machine learning
em Duke University
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (24)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (7)
- Aston University Research Archive (42)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (37)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (72)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (52)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (23)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (42)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (46)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (1)
- E-Research at Tennessee State University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (63)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (17)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (10)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (6)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (6)
- Scientific Open-access Literature Archive and Repository (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (51)
- Universidade do Minho (14)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universita di Parma (1)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (34)
- Université de Montréal, Canada (14)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (32)
- University of Queensland eSpace - Australia (24)
- University of Southampton, United Kingdom (5)
- University of Washington (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.