6 resultados para Rank regression
em Duke University
Resumo:
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.
Resumo:
Indoor residual spraying (IRS) has become an increasingly popular method of insecticide use for malaria control, and many recent studies have reported on its effectiveness in reducing malaria burden in a single community or region. There is a need for systematic review and integration of the published literature on IRS and the contextual determining factors of its success in controlling malaria. This study reports the findings of a meta-regression analysis based on 13 published studies, which were chosen from more than 400 articles through a systematic search and selection process. The summary relative risk for reducing malaria prevalence was 0.38 (95% confidence interval = 0.31-0.46), which indicated a risk reduction of 62%. However, an excessive degree of heterogeneity was found between the studies. The meta-regression analysis indicates that IRS is more effective with high initial prevalence, multiple rounds of spraying, use of DDT, and in regions with a combination of Plasmodium falciparum and P. vivax malaria.
Resumo:
In regression analysis of counts, a lack of simple and efficient algorithms for posterior computation has made Bayesian approaches appear unattractive and thus underdeveloped. We propose a lognormal and gamma mixed negative binomial (NB) regression model for counts, and present efficient closed-form Bayesian inference; unlike conventional Poisson models, the proposed approach has two free parameters to include two different kinds of random effects, and allows the incorporation of prior information, such as sparsity in the regression coefficients. By placing a gamma distribution prior on the NB dispersion parameter r, and connecting a log-normal distribution prior with the logit of the NB probability parameter p, efficient Gibbs sampling and variational Bayes inference are both developed. The closed-form updates are obtained by exploiting conditional conjugacy via both a compound Poisson representation and a Polya-Gamma distribution based data augmentation approach. The proposed Bayesian inference can be implemented routinely, while being easily generalizable to more complex settings involving multivariate dependence structures. The algorithms are illustrated using real examples. Copyright 2012 by the author(s)/owner(s).
Resumo:
© 2014 The Association for the Study of Animal Behaviour.For many long-lived mammalian species, extended maternal investment has a profound effect on offspring integration in complex social environments. One component of this investment may be aiding young in aggressive interactions, which can set the stage for offspring social position later in life. Here we examined maternal effects on dyadic aggressive interactions between immature (<12 years) chimpanzees. Specifically, we tested whether relative maternal rank predicted the probability of winning an aggressive interaction. We also examined maternal responses to aggressive interactions to determine whether maternal interventions explain interaction outcomes. Using a 12-year behavioural data set (2000-2011) from Gombe National Park, Tanzania, we found that relative maternal rank predicted the probability of winning aggressive interactions in male-male and male-female aggressive interactions: offspring were more likely to win if their mother outranked their opponent's mother. Female-female aggressive interactions occurred infrequently (two interactions), so could not be analysed. The probability of winning was also higher for relatively older individuals in male-male interactions, and for males in male-female interactions. Maternal interventions were rare (7.3% of 137 interactions), suggesting that direct involvement does not explain the outcome for the vast majority of aggressive interactions. These findings provide important insight into the ontogeny of aggressive behaviour and early dominance relationships in wild apes and highlight a potential social advantage for offspring of higher-ranking mothers. This advantage may be particularly pronounced for sons, given male philopatry in chimpanzees and the potential for social status early in life to translate more directly to adult rank.
Resumo:
Association studies of quantitative traits have often relied on methods in which a normal distribution of the trait is assumed. However, quantitative phenotypes from complex human diseases are often censored, highly skewed, or contaminated with outlying values. We recently developed a rank-based association method that takes into account censoring and makes no distributional assumptions about the trait. In this study, we applied our new method to age-at-onset data on ALDX1 and ALDX2. Both traits are highly skewed (skewness > 1.9) and often censored. We performed a whole genome association study of age at onset of the ALDX1 trait using Illumina single-nucleotide polymorphisms. Only slightly more than 5% of markers were significant. However, we identified two regions on chromosomes 14 and 15, which each have at least four significant markers clustering together. These two regions may harbor genes that regulate age at onset of ALDX1 and ALDX2. Future fine mapping of these two regions with densely spaced markers is warranted.
Resumo:
PURPOSE: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D+dual energy+time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. METHODS: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction problem using the split Bregman method and GPU-based implementations of backprojection, reprojection, and kernel regression. Using a preclinical mouse model, the authors apply the proposed algorithm to study myocardial injury following radiation treatment of breast cancer. RESULTS: Quantitative 5D simulations are performed using the MOBY mouse phantom. Twenty data sets (ten cardiac phases, two energies) are reconstructed with 88 μm, isotropic voxels from 450 total projections acquired over a single 360° rotation. In vivo 5D myocardial injury data sets acquired in two mice injected with gold and iodine nanoparticles are also reconstructed with 20 data sets per mouse using the same acquisition parameters (dose: ∼60 mGy). For both the simulations and the in vivo data, the reconstruction quality is sufficient to perform material decomposition into gold and iodine maps to localize the extent of myocardial injury (gold accumulation) and to measure cardiac functional metrics (vascular iodine). Their 5D CT imaging protocol represents a 95% reduction in radiation dose per cardiac phase and energy and a 40-fold decrease in projection sampling time relative to their standard imaging protocol. CONCLUSIONS: Their 5D CT data acquisition and reconstruction protocol efficiently exploits the rank-sparse nature of spectral and temporal CT data to provide high-fidelity reconstruction results without increased radiation dose or sampling time.