2 resultados para Raleigh, Walter, Sir, approximately 1552-1618

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fern from the French Pyrenees-×Cystocarpium roskamianum-is a recently formed intergeneric hybrid between parental lineages that diverged from each other approximately 60 million years ago (mya; 95% highest posterior density: 40.2-76.2 mya). This is an extraordinarily deep hybridization event, roughly akin to an elephant hybridizing with a manatee or a human with a lemur. In the context of other reported deep hybrids, this finding suggests that populations of ferns, and other plants with abiotically mediated fertilization, may evolve reproductive incompatibilities more slowly, perhaps because they lack many of the premating isolation mechanisms that characterize most other groups of organisms. This conclusion implies that major features of Earth's biodiversity-such as the relatively small number of species of ferns compared to those of angiosperms-may be, in part, an indirect by-product of this slower "speciation clock" rather than a direct consequence of adaptive innovations by the more diverse lineages.