4 resultados para Rainfall seasonality

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2010 by the American Geophysical Union.The cross-scale probabilistic structure of rainfall intensity records collected over time scales ranging from hours to decades at sites dominated by both convective and frontal systems is investigated. Across these sites, intermittency build-up from slow to fast time-scales is analyzed in terms of heavy tailed and asymmetric signatures in the scale-wise evolution of rainfall probability density functions (pdfs). The analysis demonstrates that rainfall records dominated by convective storms develop heavier-Tailed power law pdfs toward finer scales when compared with their frontal systems counterpart. Also, a concomitant marked asymmetry build-up emerges at such finer time scales. A scale-dependent probabilistic description of such fat tails and asymmetry appearance is proposed based on a modified q-Gaussian model, able to describe the cross-scale rainfall pdfs in terms of the nonextensivity parameter q, a lacunarity (intermittency) correction and a tail asymmetry coefficient, linked to the rainfall generation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of summer precipitation in the southeastern United States is examined in this study using 60-yr (1948-2007) rainfall data. The Southeast summer rainfalls exhibited higher interannual variability with more intense summer droughts and anomalous wetness in the recent 30 years (1978-2007) than in the prior 30 years (1948-77). Such intensification of summer rainfall variability was consistent with a decrease of light (0.1-1 mm day-1) and medium (1-10 mm day-1) rainfall events during extremely dry summers and an increase of heavy (.10 mm day-1) rainfall events in extremely wet summers. Changes in rainfall variability were also accompanied by a southward shift of the region of maximum zonal wind variability at the jet stream level in the latter period. The covariability between the Southeast summer precipitation and sea surface temperatures (SSTs) is also analyzed using the singular value decomposition (SVD) method. It is shown that the increase of Southeast summer precipitation variability is primarily associated with a higher SST variability across the equatorial Atlantic and also SST warming in the Atlantic. © 2010 American Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.