8 resultados para R-loops
em Duke University
Resumo:
Mitotic genome instability can occur during the repair of double-strand breaks (DSBs) in DNA, which arise from endogenous and exogenous sources. Studying the mechanisms of DNA repair in the budding yeast, Saccharomyces cerevisiae has shown that Homologous Recombination (HR) is a vital repair mechanism for DSBs. HR can result in a crossover event, in which the broken molecule reciprocally exchanges information with a homologous repair template. The current model of double-strand break repair (DSBR) also allows for a tract of information to non-reciprocally transfer from the template molecule to the broken molecule. These “gene conversion” events can vary in size and can occur in conjunction with a crossover event or in isolation. The frequency and size of gene conversions in isolation and gene conversions associated with crossing over has been a source of debate due to the variation in systems used to detect gene conversions and the context in which the gene conversions are measured.
In Chapter 2, I use an unbiased system that measures the frequency and size of gene conversion events, as well as the association of gene conversion events with crossing over between homologs in diploid yeast. We show mitotic gene conversions occur at a rate of 1.3x10-6 per cell division, are either large (median 54.0kb) or small (median 6.4kb), and are associated with crossing over 43% of the time.
DSBs can arise from endogenous cellular processes such as replication and transcription. Two important RNA/DNA hybrids are involved in replication and transcription: R-loops, which form when an RNA transcript base pairs with the DNA template and displaces the non-template DNA strand, and ribonucleotides embedded into DNA (rNMPs), which arise when replicative polymerase errors insert ribonucleotide instead of deoxyribonucleotide triphosphates. RNaseH1 (encoded by RNH1) and RNaseH2 (whose catalytic subunit is encoded by RNH201) both recognize and degrade the RNA in within R-loops while RNaseH2 alone recognizes, nicks, and initiates removal of rNMPs embedded into DNA. Due to their redundant abilities to act on RNA:DNA hybrids, aberrant removal of rNMPs from DNA has been thought to lead to genome instability in an rnh201Δ background.
In Chapter 3, I characterize (1) non-selective genome-wide homologous recombination events and (2) crossing over on chromosome IV in mutants defective in RNaseH1, RNaseH2, or RNaseH1 and RNaseH2. Using a mutant DNA polymerase that incorporates 4-fold fewer rNMPs than wild type, I demonstrate that the primary recombinogenic lesion in the RNaseH2-defective genome is not rNMPs, but rather R-loops. This work suggests different in-vivo roles for RNaseH1 and RNaseH2 in resolving R-loops in yeast and is consistent with R-loops, not rNMPs, being the the likely source of pathology in Aicardi-Goutières Syndrome patients defective in RNaseH2.
Resumo:
BACKGROUND: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. CONCLUSIONS/SIGNIFICANCE: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.
Resumo:
The costs of developing the types of new drugs that have been pursued by traditional pharmaceutical firms have been estimated in a number of studies. However, similar analyses have not been published on the costs of developing the types of molecules on which biotech firms have focused. This study represents a first attempt to get a sense for the magnitude of the R&D costs associated with the discovery and development of new therapeutic biopharmaceuticals (specifically, recombinant proteins and monoclonal antibodies [mAbs]). We utilize drug-specific data on cash outlays, development times, and success in obtaining regulatory marketing approval to estimate the average pre-tax R&D resource cost for biopharmaceuticals up to the point of initial US marketing approval (in year 2005 dollars). We found average out-of-pocket (cash outlay) cost estimates per approved biopharmaceutical of $198 million, $361 million, and $559 million for the preclinical period, the clinical period, and in total, respectively. Including the time costs associated with biopharmaceutical R&D, we found average capitalized cost estimates per approved biopharmaceutical of $615 million, $626 million, and $1241 million for the preclinical period, the clinical period, and in total, respectively. Adjusting previously published estimates of R&D costs for traditional pharmaceutical firms by using past growth rates for pharmaceutical company costs to correspond to the more recent period to which our biopharmaceutical data apply, we found that total out-of-pocket cost per approved biopharmaceutical was somewhat lower than for the pharmaceutical company data ($559 million vs $672 million). However, estimated total capitalized cost per approved new molecule was nearly the same for biopharmaceuticals as for the adjusted pharmaceutical company data ($1241 million versus $1318 million). The results should be viewed with some caution for now given a limited number of biopharmaceutical molecules with data on cash outlays, different therapeutic class distributions for biopharmaceuticals and for pharmaceutical company drugs, and uncertainty about whether recent growth rates in pharmaceutical company costs are different from immediate past growth rates. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
This study finds that the mean IRR for 1980-84 U.S. new drug introductions is 11.1%, and the mean NPV is 22 million (1990 dollars). The distribution of returns is highly skewed. The results are robust to plausible changes in the baseline assumptions. Our work is also compared with a 1993 study by the OTA. Despite some important differences in assumptions, both studies imply that returns for the average NCE are within one percentage point of the industry's cost of capital. This is much less than what is typically observed in analyses based on accounting data.
Resumo:
Recent efforts to endogenize technological change in climate policy models demonstrate the importance of accounting for the opportunity cost of climate R&D investments. Because the social returns to R&D investments are typically higher than the social returns to other types of investment, any new climate mitigation R&D that comes at the expense of other R&D investment may dampen the overall gains from induced technological change. Unfortunately, there has been little empirical work to guide modelers as to the potential magnitude of such crowding out effects. This paper considers both the private and social opportunity costs of climate R&D. Addressing private costs, we ask whether an increase in climate R&D represents new R&D spending, or whether some (or all) of the additional climate R&D comes at the expense of other R&D. Addressing social costs, we use patent citations to compare the social value of alternative energy research to other types of R&D that may be crowded out. Beginning at the industry level, we find no evidence of crowding out across sectors-that is, increases in energy R&D do not draw R&D resources away from sectors that do not perform R&D. Given this, we proceed with a detailed look at alternative energy R&D. Linking patent data and financial data by firm, we ask whether an increase in alternative energy patents leads to a decrease in other types of patenting activity. While we find that increases in alternative energy patents do result in fewer patents of other types, the evidence suggests that this is due to profit-maximizing changes in research effort, rather than financial constraints that limit the total amount of R&D possible. Finally, we use patent citation data to compare the social value of alternative energy patents to other patents by these firms. Alternative energy patents are cited more frequently, and by a wider range of other technologies, than other patents by these firms, suggesting that their social value is higher. © 2011 Elsevier B.V.
Resumo:
© 2012 by Oxford University Press. All rights reserved.This article reviews the extensive literature on R&D costs and returns. The first section focuses on R&D costs and the various factors that have affected the trends in real R&D costs over time. The second section considers economic studies on the distribution of returns in pharmaceuticals for different cohorts of new drug introductions. It also reviews the use of these studies to analyze the impact of policy actions on R&D costs and returns. The final section concludes and discusses open questions for further research.
Resumo:
Nolan and Temple Lang argue that “the ability to express statistical computations is an es- sential skill.” A key related capacity is the ability to conduct and present data analysis in a way that another person can understand and replicate. The copy-and-paste workflow that is an artifact of antiquated user-interface design makes reproducibility of statistical analysis more difficult, especially as data become increasingly complex and statistical methods become increasingly sophisticated. R Markdown is a new technology that makes creating fully-reproducible statistical analysis simple and painless. It provides a solution suitable not only for cutting edge research, but also for use in an introductory statistics course. We present experiential and statistical evidence that R Markdown can be used effectively in introductory statistics courses, and discuss its role in the rapidly-changing world of statistical computation.