12 resultados para Quality models
em Duke University
Resumo:
The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.
Resumo:
An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.
Resumo:
Conventional hedonic techniques for estimating the value of local amenities rely on the assumption that households move freely among locations. We show that when moving is costly, the variation in housing prices and wages across locations may no longer reflect the value of differences in local amenities. We develop an alternative discrete-choice approach that models the household location decision directly, and we apply it to the case of air quality in US metro areas in 1990 and 2000. Because air pollution is likely to be correlated with unobservable local characteristics such as economic activity, we instrument for air quality using the contribution of distant sources to local pollution-excluding emissions from local sources, which are most likely to be correlated with local conditions. Our model yields an estimated elasticity of willingness to pay with respect to air quality of 0.34-0.42. These estimates imply that the median household would pay $149-$185 (in constant 1982-1984 dollars) for a one-unit reduction in average ambient concentrations of particulate matter. These estimates are three times greater than the marginal willingness to pay estimated by a conventional hedonic model using the same data. Our results are robust to a range of covariates, instrumenting strategies, and functional form assumptions. The findings also confirm the importance of instrumenting for local air pollution. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Childhood sexual abuse is prevalent among people living with HIV, and the experience of shame is a common consequence of childhood sexual abuse and HIV infection. This study examined the role of shame in health-related quality of life among HIV-positive adults who have experienced childhood sexual abuse. Data from 247 HIV-infected adults with a history of childhood sexual abuse were analyzed. Hierarchical linear regression was conducted to assess the impact of shame regarding both sexual abuse and HIV infection, while controlling for demographic, clinical, and psychosocial factors. In bivariate analyses, shame regarding sexual abuse and HIV infection were each negatively associated with health-related quality of life and its components (physical well-being, function and global well-being, emotional and social well-being, and cognitive functioning). After controlling for demographic, clinical, and psychosocial factors, HIV-related, but not sexual abuse-related, shame remained a significant predictor of reduced health-related quality of life, explaining up to 10% of the variance in multivariable models for overall health-related quality of life, emotional, function and global, and social well-being and cognitive functioning over and above that of other variables entered into the model. Additionally, HIV symptoms, perceived stress, and perceived availability of social support were associated with health-related quality of life in multivariable models. Shame is an important and modifiable predictor of health-related quality of life in HIV-positive populations, and medical and mental health providers serving HIV-infected populations should be aware of the importance of shame and its impact on the well-being of their patients.
Resumo:
Autophagy has been predominantly studied as a nonselective self-digestion process that recycles macromolecules and produces energy in response to starvation. However, autophagy independent of nutrient status has long been known to exist. Recent evidence suggests that this form of autophagy enforces intracellular quality control by selectively disposing of aberrant protein aggregates and damaged organelles--common denominators in various forms of neurodegenerative diseases. By definition, this form of autophagy, termed quality-control (QC) autophagy, must be different from nutrient-regulated autophagy in substrate selectivity, regulation and function. We have recently identified the ubiquitin-binding deacetylase, HDAC6, as a key component that establishes QC. HDAC6 is not required for autophagy activation per se; rather, it is recruited to ubiquitinated autophagic substrates where it stimulates autophagosome-lysosome fusion by promoting F-actin remodeling in a cortactin-dependent manner. Remarkably, HDAC6 and cortactin are dispensable for starvation-induced autophagy. These findings reveal that autophagosomes associated with QC are molecularly and biochemically distinct from those associated with starvation autophagy, thereby providing a new molecular framework to understand the emerging complexity of autophagy and therapeutic potential of this unique machinery.
Resumo:
BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.
Resumo:
BACKGROUND: Anticoagulation can reduce quality of life, and different models of anticoagulation management might have different impacts on satisfaction with this component of medical care. Yet, to our knowledge, there are no scales measuring quality of life and satisfaction with anticoagulation that can be generalized across different models of anticoagulation management. We describe the development and preliminary validation of such an instrument - the Duke Anticoagulation Satisfaction Scale (DASS). METHODS: The DASS is a 25-item scale addressing the (a) negative impacts of anticoagulation (limitations, hassles and burdens); and (b) positive impacts of anticoagulation (confidence, reassurance, satisfaction). Each item has 7 possible responses. The DASS was administered to 262 patients currently receiving oral anticoagulation. Scales measuring generic quality of life, satisfaction with medical care, and tendency to provide socially desirable responses were also administered. Statistical analysis included assessment of item variability, internal consistency (Cronbach's alpha), scale structure (factor analysis), and correlations between the DASS and demographic variables, clinical characteristics, and scores on the above scales. A follow-up study of 105 additional patients assessed test-retest reliability. RESULTS: 220 subjects answered all items. Ceiling and floor effects were modest, and 25 of the 27 proposed items grouped into 2 factors (positive impacts, negative impacts, this latter factor being potentially subdivided into limitations versus hassles and burdens). Each factor had a high degree of internal consistency (Cronbach's alpha 0.78-0.91). The limitations and hassles factors consistently correlated with the SF-36 scales measuring generic quality of life, while the positive psychological impact scale correlated with age and time on anticoagulation. The intra-class correlation coefficient for test-retest reliability was 0.80. CONCLUSIONS: The DASS has demonstrated reasonable psychometric properties to date. Further validation is ongoing. To the degree that dissatisfaction with anticoagulation leads to decreased adherence, poorer INR control, and poor clinical outcomes, the DASS has the potential to help identify reasons for dissatisfaction (and positive satisfaction), and thus help to develop interventions to break this cycle. As an instrument designed to be applicable across multiple models of anticoagulation management, the DASS could be crucial in the scientific comparison between those models of care.
Resumo:
X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.
The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.
We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.
Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.
Resumo:
OBJECTIVE: To evaluate the performance of a continuous quality improvement collaboration at Ridge Regional Hospital, Accra, Ghana, that aimed to halve maternal and neonatal deaths. METHODS: In a quasi-experimental, pre- and post-intervention analysis, system deficiencies were analyzed and 97 improvement activities were implemented from January 2007 to December 2011. Data were collected on outcomes and implementation rates of improvement activities. Severity-adjustment models were used to calculate counterfactual mortality ratios. Regression analysis was used to determine the association between improvement activities, staffing, and maternal mortality. RESULTS: Maternal mortality decreased by 22.4% between 2007 and 2011, from 496 to 385 per 100000 deliveries, despite a 50% increase in deliveries and five- and three-fold increases in the proportion of pregnancies complicated by obstetric hemorrhage and hypertensive disorders of pregnancy, respectively. Case fatality rates for obstetric hemorrhage and hypertensive disorders of pregnancy decreased from 14.8% to 1.6% and 3.1% to 1.1%, respectively. The mean implementation score was 68% for the 97 improvement processes. Overall, 43 maternal deaths were prevented by the intervention; however, risk severity-adjustment models indicated that an even greater number of deaths was averted. Mortality reduction was correlated with 26 continuous quality improvement activities, and with the number of anesthesia nurses and labor midwives. CONCLUSION: The implementation of quality improvement activities was closely correlated with improved maternal mortality.