6 resultados para Quadratic

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on Pulay's direct inversion iterative subspace (DIIS) approach, we present a method to accelerate self-consistent field (SCF) convergence. In this method, the quadratic augmented Roothaan-Hall (ARH) energy function, proposed recently by Høst and co-workers [J. Chem. Phys. 129, 124106 (2008)], is used as the object of minimization for obtaining the linear coefficients of Fock matrices within DIIS. This differs from the traditional DIIS of Pulay, which uses an object function derived from the commutator of the density and Fock matrices. Our results show that the present algorithm, abbreviated ADIIS, is more robust and efficient than the energy-DIIS (EDIIS) approach. In particular, several examples demonstrate that the combination of ADIIS and DIIS ("ADIIS+DIIS") is highly reliable and efficient in accelerating SCF convergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply a coded aperture snapshot spectral imager (CASSI) to fluorescence microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of a three-dimensional (3D) spectral data cube. We minimize a convex quadratic function with total variation (TV) constraints for data cube estimation from the 2D snapshot. We adapt the TV minimization algorithm for direct fluorescent bead identification from CASSI measurements by combining a priori knowledge of the spectra associated with each bead type. Our proposed method creates a 2D bead identity image. Simulated fluorescence CASSI measurements are used to evaluate the behavior of the algorithm. We also record real CASSI measurements of a ten bead type fluorescence scene and create a 2D bead identity map. A baseline image from filtered-array imaging system verifies CASSI's 2D bead identity map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an active millimeter-wave holographic imaging system that uses compressive measurements for three-dimensional (3D) tomographic object estimation. Our system records a two-dimensional (2D) digitized Gabor hologram by translating a single pixel incoherent receiver. Two approaches for compressive measurement are undertaken: nonlinear inversion of a 2D Gabor hologram for 3D object estimation and nonlinear inversion of a randomly subsampled Gabor hologram for 3D object estimation. The object estimation algorithm minimizes a convex quadratic problem using total variation (TV) regularization for 3D object estimation. We compare object reconstructions using linear backpropagation and TV minimization, and we present simulated and experimental reconstructions from both compressive measurement strategies. In contrast with backpropagation, which estimates the 3D electromagnetic field, TV minimization estimates the 3D object that produces the field. Despite undersampling, range resolution is consistent with the extent of the 3D object band volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional regulation has been studied intensively in recent decades. One important aspect of this regulation is the interaction between regulatory proteins, such as transcription factors (TF) and nucleosomes, and the genome. Different high-throughput techniques have been invented to map these interactions genome-wide, including ChIP-based methods (ChIP-chip, ChIP-seq, etc.), nuclease digestion methods (DNase-seq, MNase-seq, etc.), and others. However, a single experimental technique often only provides partial and noisy information about the whole picture of protein-DNA interactions. Therefore, the overarching goal of this dissertation is to provide computational developments for jointly modeling different experimental datasets to achieve a holistic inference on the protein-DNA interaction landscape.

We first present a computational framework that can incorporate the protein binding information in MNase-seq data into a thermodynamic model of protein-DNA interaction. We use a correlation-based objective function to model the MNase-seq data and a Markov chain Monte Carlo method to maximize the function. Our results show that the inferred protein-DNA interaction landscape is concordant with the MNase-seq data and provides a mechanistic explanation for the experimentally collected MNase-seq fragments. Our framework is flexible and can easily incorporate other data sources. To demonstrate this flexibility, we use prior distributions to integrate experimentally measured protein concentrations.

We also study the ability of DNase-seq data to position nucleosomes. Traditionally, DNase-seq has only been widely used to identify DNase hypersensitive sites, which tend to be open chromatin regulatory regions devoid of nucleosomes. We reveal for the first time that DNase-seq datasets also contain substantial information about nucleosome translational positioning, and that existing DNase-seq data can be used to infer nucleosome positions with high accuracy. We develop a Bayes-factor-based nucleosome scoring method to position nucleosomes using DNase-seq data. Our approach utilizes several effective strategies to extract nucleosome positioning signals from the noisy DNase-seq data, including jointly modeling data points across the nucleosome body and explicitly modeling the quadratic and oscillatory DNase I digestion pattern on nucleosomes. We show that our DNase-seq-based nucleosome map is highly consistent with previous high-resolution maps. We also show that the oscillatory DNase I digestion pattern is useful in revealing the nucleosome rotational context around TF binding sites.

Finally, we present a state-space model (SSM) for jointly modeling different kinds of genomic data to provide an accurate view of the protein-DNA interaction landscape. We also provide an efficient expectation-maximization algorithm to learn model parameters from data. We first show in simulation studies that the SSM can effectively recover underlying true protein binding configurations. We then apply the SSM to model real genomic data (both DNase-seq and MNase-seq data). Through incrementally increasing the types of genomic data in the SSM, we show that different data types can contribute complementary information for the inference of protein binding landscape and that the most accurate inference comes from modeling all available datasets.

This dissertation provides a foundation for future research by taking a step toward the genome-wide inference of protein-DNA interaction landscape through data integration.