5 resultados para QUENCHED FORM
em Duke University
Resumo:
It is common for a retailer to sell products from competing manufacturers. How then should the firms manage their contract negotiations? The supply chain coordination literature focuses either on a single manufacturer selling to a single retailer or one manufacturer selling to many (possibly competing) retailers. We find that some key conclusions from those market structures do not apply in our setting, where multiple manufacturers sell through a single retailer. We allow the manufacturers to compete for the retailer's business using one of three types of contracts: a wholesale-price contract, a quantity-discount contract, or a two-part tariff. It is well known that the latter two, more sophisticated contracts enable the manufacturer to coordinate the supply chain, thereby maximizing the profits available to the firms. More importantly, they allow the manufacturer to extract rents from the retailer, in theory allowing the manufacturer to leave the retailer with only her reservation profit. However, we show that in our market structure these two sophisticated contracts force the manufacturers to compete more aggressively relative to when they only offer wholesale-price contracts, and this may leave them worse off and the retailer substantially better off. In other words, although in a serial supply chain a retailer may have just cause to fear quantity discounts and two-part tariffs, a retailer may actually prefer those contracts when offered by competing manufacturers. We conclude that the properties a contractual form exhibits in a one-manufacturer supply chain may not carry over to the realistic setting in which multiple manufacturers must compete to sell their goods through the same retailer. © 2010 INFORMS.
Resumo:
BACKGROUND: Consent forms have lengthened over time and become harder for participants to understand. We sought to demonstrate the feasibility of creating a simplified consent form for biobanking that comprises the minimum information necessary to meet ethical and regulatory requirements. We then gathered preliminary data concerning its content from hypothetical biobank participants. METHODOLOGY/PRINCIPAL FINDINGS: We followed basic principles of plain-language writing and incorporated into a 2-page form (not including the signature page) those elements of information required by federal regulations and recommended by best practice guidelines for biobanking. We then recruited diabetes patients from community-based practices and randomized half (n = 56) to read the 2-page form, first on paper and then a second time on a tablet computer. Participants were encouraged to use "More information" buttons on the electronic version whenever they had questions or desired further information. These buttons led to a series of "Frequently Asked Questions" (FAQs) that contained additional detailed information. Participants were asked to identify specific sentences in the FAQs they thought would be important if they were considering taking part in a biorepository. On average, participants identified 7 FAQ sentences as important (mean 6.6, SD 14.7, range: 0-71). No one sentence was highlighted by a majority of participants; further, 34 (60.7%) participants did not highlight any FAQ sentences. CONCLUSIONS: Our preliminary findings suggest that our 2-page form contains the information that most prospective participants identify as important. Combining simplified forms with supplemental material for those participants who desire more information could help minimize consent form length and complexity, allowing the most substantively material information to be better highlighted and enabling potential participants to read the form and ask questions more effectively.
Resumo:
Agonist-promoted desensitization of adenylate cyclase is intimately associated with phosphorylation of the beta-adrenergic receptor in mammalian, avian, and amphibian cells. However, the nature of the protein kinase(s) involved in receptor phosphorylation remains largely unknown. We report here the identification and partial purification of a protein kinase capable of phosphorylating the agonist-occupied form of the purified beta-adrenergic receptor. The enzyme is prepared from a supernatant fraction from high-speed centrifugation of lysed kin- cells, a mutant of S49 lymphoma cells that lacks a functional cAMP-dependent protein kinase. The beta-agonist isoproterenol induces a 5- to 10-fold increase in receptor phosphorylation by this kinase, which is blocked by the antagonist alprenolol. Fractionation of the kin- supernatant on molecular-sieve HPLC and DEAE-Sephacel results in a 50- to 100-fold purified beta-adrenergic receptor kinase preparation that is largely devoid of other protein kinase activities. The kinase activity is insensitive to cAMP, cGMP, cAMP-dependent kinase inhibitor, Ca2+-calmodulin, Ca2+-phospholipid, and phorbol esters and does not phosphorylate general kinase substrates such as casein and histones. Phosphate appears to be incorporated solely into serine residues. The existence of this novel cAMP-independent kinase, which preferentially phosphorylates the agonist-occupied form of the beta-adrenergic receptor, suggests a mechanism that may explain the homologous or agonist-specific form of adenylate cyclase desensitization. It also suggests a general mechanism for regulation of receptor function in which only the agonist-occupied or "active" form of the receptor is a substrate for enzymes inducing covalent modification.
Resumo:
The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies.
Resumo:
Undergraduates were asked to generate a name for a hypothetical new exemplar of a category. They produced names that had the same numbers of syllables, the same endings, and the same types of word stems as existing exemplars of that category. In addition, novel exemplars, each consisting of a nonsense syllable root and a prototypical ending, were accurately assigned to categories. The data demonstrate the abstraction and use of surface properties of words.