3 resultados para QR355 Virology
em Duke University
Resumo:
The array of human immunodeficiency virus (HIV) subtypes encountered in East London, an area long associated with migration, is unusually heterogeneous, reflecting the diverse geographical origins of the population. In this study it was shown that viral subtypes or clades infecting a sample of HIV type 1 (HIV-1)-positive individuals in East London reflect the global pandemic. The authors studied the humoral response in 210 treatment-naïve chronically HIV-1-infected (>1 year) adult subjects against a panel of 12 viruses from six different clades. Plasmas from individuals infected with clade C, but also plasmas from clade A, and to a lesser degree clade CRF02_AG and CRF01_AE, were significantly more potent at neutralizing the tested viruses compared with plasmas from individuals infected with clade B. The difference in humoral robustness between clade C- and B-infected patients was confirmed in titration studies with an extended panel of clade B and C viruses. These results support the approach to develop an HIV-1 vaccine that includes clade C or A envelope protein (Env) immunogens for the induction of a potent neutralizing humoral response.
Resumo:
No
Resumo:
Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.