5 resultados para Public Participation Geographic Information System
em Duke University
Resumo:
Background. The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods. We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results. There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions. The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.
Resumo:
The ability for the citizens of a nation to determine their own representation has long been regarded as one of the most critical objectives of any electoral system. Without having the assurance of equality in representation, the fundamental nature and operation of the political system is severely undermined. Given the centuries of institutional reforms and population changes in the American system, Congressional Redistricting stands as an institution whereby this promise of effective representation can either be fulfilled or denied. The broad set of processes that encapsulate Congres- sional Redistricting have been discussed, experimented, and modified to achieve clear objectives and have long been understood to be important. Questions remain about how the dynamics which link all of these processes operate and what impact the real- ities of Congressional Redistricting hold for representation in the American system. This dissertation examines three aspects of how Congressional Redistricting in the Untied States operates in accordance with the principle of “One Person, One Vote.” By utilizing data and data analysis techniques of Geographic Information Systems (GIS), this dissertation seeks to address how Congressional Redistricting impacts the principle of one person, one vote from the standpoint of legislator accountability, redistricting institutions, and the promise of effective minority representation.
Resumo:
We evaluated the intention, implementation, and impact of Costa Rica's program of payments for environmental services (PSA), which was established in the late 1990s. Payments are given to private landowners who own land in forest areas in recognition of the ecosystem services their land provides. To characterize the distribution of PSA in Costa Rica, we combined remote sensing with geographic information system databases and then used econometrics to explore the impacts of payments on deforestation. Payments were distributed broadly across ecological and socioeconomic gradients, but the 1997-2000 deforestation rate was not significantly lower in areas that received payments. Other successful Costa Rican conservation policies, including those prior to the PSA program, may explain the current reduction in deforestation rates. The PSA program is a major advance in the global institutionalization of ecosystem investments because few, if any, other countries have such a conservation history and because much can be learned from Costa Rica's experiences.
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
Background. Cytomegalovirus (CMV) is a common cause of birth defects and hearing loss in infants and opportunistic infections in the immunocompromised. Previous studies have found higher CMV seroprevalence rates among minorities and among persons with lower socioeconomic status. No studies have investigated the geographic distribution of CMV and its relationship to age, race, and poverty in the community. Methods. We identified patients from 6 North Carolina counties who were tested in the Duke University Health System for CMV immunoglobulin G. We performed spatial statistical analyses to analyze the distributions of seropositive and seronegative individuals. Results. Of 1884 subjects, 90% were either white or African American. Cytomegalovirus seropositivity was significantly more common among African Americans (73% vs 42%; odds ratio, 3.31; 95% confidence interval, 2.7-4.1), and this disparity persisted across the life span. We identified clusters of high and low CMV odds, both of which were largely explained by race. Clusters of high CMV odds were found in communities with high proportions of African Americans. Conclusions. Cytomegalovirus seropositivity is geographically clustered, and its distribution is strongly determined by a community's racial composition. African American communities have high prevalence rates of CMV infection, and there may be a disparate burden of CMV-associated morbidity in these communities.