18 resultados para Psychomotor changes
em Duke University
Resumo:
Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.
Resumo:
The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.
Resumo:
BACKGROUND: Over the past two decades more than fifty thousand unique clinical and biological samples have been assayed using the Affymetrix HG-U133 and HG-U95 GeneChip microarray platforms. This substantial repository has been used extensively to characterize changes in gene expression between biological samples, but has not been previously mined en masse for changes in mRNA processing. We explored the possibility of using HG-U133 microarray data to identify changes in alternative mRNA processing in several available archival datasets. RESULTS: Data from these and other gene expression microarrays can now be mined for changes in transcript isoform abundance using a program described here, SplicerAV. Using in vivo and in vitro breast cancer microarray datasets, SplicerAV was able to perform both gene and isoform specific expression profiling within the same microarray dataset. Our reanalysis of Affymetrix U133 plus 2.0 data generated by in vitro over-expression of HRAS, E2F3, beta-catenin (CTNNB1), SRC, and MYC identified several hundred oncogene-induced mRNA isoform changes, one of which recognized a previously unknown mechanism of EGFR family activation. Using clinical data, SplicerAV predicted 241 isoform changes between low and high grade breast tumors; with changes enriched among genes coding for guanyl-nucleotide exchange factors, metalloprotease inhibitors, and mRNA processing factors. Isoform changes in 15 genes were associated with aggressive cancer across the three breast cancer datasets. CONCLUSIONS: Using SplicerAV, we identified several hundred previously uncharacterized isoform changes induced by in vitro oncogene over-expression and revealed a previously unknown mechanism of EGFR activation in human mammary epithelial cells. We analyzed Affymetrix GeneChip data from over 400 human breast tumors in three independent studies, making this the largest clinical dataset analyzed for en masse changes in alternative mRNA processing. The capacity to detect RNA isoform changes in archival microarray data using SplicerAV allowed us to carry out the first analysis of isoform specific mRNA changes directly associated with cancer survival.
Resumo:
BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.
Resumo:
PURPOSE: To develop a mathematical model that can predict refractive changes after Descemet stripping endothelial keratoplasty (DSEK). METHODS: A mathematical formula based on the Gullstrand eye model was generated to estimate the change in refractive power of the eye after DSEK. This model was applied to four DSEK cases retrospectively, to compare measured and predicted refractive changes after DSEK. RESULTS: The refractive change after DSEK is determined by calculating the difference in the power of the eye before and after DSEK surgery. The power of the eye post-DSEK surgery can be calculated with modified Gullstrand eye model equations that incorporate the change in the posterior radius of curvature and change in the distance between the principal planes of the cornea and lens after DSEK. Analysis of this model suggests that the ratio of central to peripheral graft thickness (CP ratio) and central thickness can have significant effect on refractive change where smaller CP ratios and larger graft thicknesses result in larger hyperopic shifts. This model was applied to four patients, and the average predicted hyperopic shift in the overall power of the eye was calculated to be 0.83 D. This change reflected in a mean of 93% (range, 75%-110%) of patients' measured refractive shifts. CONCLUSIONS: This simplified DSEK mathematical model can be used as a first step for estimating the hyperopic shift after DSEK. Further studies are necessary to refine the validity of this model.
Resumo:
We investigated perceptions among overweight and obese state employees about changes to health insurance that were designed to reduce the scope of health benefits for employees who are obese or who smoke. Before implementation of health benefit plan changes, 658 state employees who were overweight (ie, those with a body mass index [BMI] of 25-29.9) or obese (ie, those with a BMI of > or = 30) enrolled in a weight-loss intervention study were asked about their attitudes and beliefs concerning the new benefit plan changes. Thirty-one percent of employees with a measured BMI of 40 or greater self-reported a BMI of less than 40, suggesting they were unaware that their current BMI would place them in a higher-risk benefit plan. More than half of all respondents reported that the new benefit changes would motivate them to make behavioral changes, but fewer than half felt confident in their ability to make changes. Respondents with a BMI of 40 or greater were more likely than respondents in lower BMI categories to oppose the new changes focused on obesity (P < .001). Current smokers were more likely than former smokers and nonsmokers to oppose the new benefit changes focused on tobacco use (P < .01). Participants represented a sample of employees enrolled in a weight-loss study, limiting generalizability to the larger population of state employees. Benefit plan changes that require employees who are obese and smoke to pay more for health care may motivate some, but not all, individuals to change their behaviors. Since confidence to lose weight was lowest among individuals in the highest BMI categories, more-intense intervention options may be needed to achieve desired health behavior changes.
Resumo:
Walkers fall frequently, especially during infancy. Children (15-, 21-, 27-, 33-, and 39-month-olds) and adults were tested in a novel foam pit paradigm to examine age-related changes in the relationship between falling and prospective control of locomotion. In trial 1, participants walked and fell into a deformable foam pit marked with distinct visual cues. Although children in all 5 age groups required multiple trials to learn to avoid falling, the number of children who showed adult-like, 1-trial learning increased with age. Exploration and alternative locomotor strategies increased dramatically on learning criterion trials and displays of negative affect were limited. Learning from falling is discussed in terms of the immediate and long-term effects of falling on prospective control of locomotion.
Resumo:
The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.
Resumo:
Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.
Resumo:
This study assessed the sustained effect of a physical activity (PA) counseling intervention on PA one year after intervention, predictors of sustained PA participation, and three classes of post-intervention PA trajectories (improvers, maintainers, and decliners) in 238 older Veterans. Declines in minutes of PA from 12 to 24 months were observed for both the treatment and control arms of the study. PA at 12 months was the strongest predictor of post-intervention changes in PA. To our surprise, those who took up the intervention and increased PA levels the most, had significant declines in post-intervention PA. Analysis of the three post-intervention PA trajectories demonstrated that the maintenance group actually reflected a group of nonresponders to the intervention who had more comorbidities, lower self-efficacy, and worse physical function than the improvers or decliners. Results suggest that behavioral counseling/support must be ongoing to promote maintenance. Strategies to promote PA appropriately to subgroups of individuals are needed.
Resumo:
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is associated with a high incidence of second tears (graft tears and contralateral ACL tears). These secondary tears have been attributed to asymmetrical lower extremity mechanics. Knee bracing is one potential intervention that can be used during rehabilitation that has the potential to normalize lower extremity asymmetry; however, little is known about the effect of bracing on movement asymmetry in patients following ACL reconstruction. HYPOTHESIS: Wearing a knee brace would increase knee joint flexion and joint symmetry. It was also expected that the joint mechanics would become more symmetrical in the braced condition. OBJECTIVE: To examine how knee bracing affects knee joint function and symmetry over the course of rehabilitation in patients 6 months following ACL reconstruction. STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Twenty-three adolescent patients rehabilitating from ACL reconstruction surgery were recruited for the study. The subjects all underwent a motion analysis assessment during a stop-jump activity with and without a functional knee brace on the surgical side that resisted extension for 6 months following the ACL reconstruction surgery. Statistical analysis utilized a 2 × 2 (limb × brace) analysis of variance with a significant alpha level of 0.05. RESULTS: Subjects had increased knee flexion on the surgical side when they were braced. The brace condition increased knee flexion velocity, decreased the initial knee flexion angle, and increased the ground reaction force and knee extension moment on both limbs. Side-to-side asymmetry was present across conditions for the vertical ground reaction force and knee extension moment. CONCLUSION: Wearing a knee brace appears to increase lower extremity compliance and promotes normalized loading on the surgical side. CLINICAL RELEVANCE: Knee extension constraint bracing in postoperative ACL patients may improve symmetry of lower extremity mechanics, which is potentially beneficial in progressing rehabilitation and reducing the incidence of second ACL tears.
Resumo:
Bacterial outer membrane vesicles (OMVs) are spherical buds of the outer membrane (OM) containing periplasmic lumenal components. OMVs have been demonstrated to play a critical part in the transmission of virulence factors, immunologically active compounds, and bacterial survival, however vesiculation also appears to be a ubiquitous physiological process for Gram-negative bacteria. Despite their characterized biological roles, especially for pathogens, very little is known about their importance for the originating organism as well as regulation and mechanism of production. Only when we have established their biogenesis can we fully uncover their roles in pathogenesis and bacterial physiology. The overall goal of this research was to characterize bacterial mutants which display altered vesiculation phenotypes using genetic and biochemical techniques, and thereby begin to elucidate the mechanism of vesicle production and regulation. One part of this work elucidated a synthetic genetic growth defect for a strain with reduced OMV production (ΔnlpA, inner membrane lipoprotein with a minor role in methionine transport) and envelope stress (ΔdegP, dual function periplasmic chaperone/ protease responsible for managing proteinaceous waste). This research showed that the growth defect of ΔnlpAΔdegP correlated with reduced OMV production with respect to the hyprevesiculator ΔdegP and the accumulation of protein in the periplasm and DegP substrates in the lumen of OMVs. We further demonstrated that OMVs do not solely act as a stress response pathway to rid the periplasm of otherwise damaging misfolded protein but also of accumulated peptidoglycan (PG) fragments and lipopolysaccharide (LPS), elucidating OMVs as a general stress response pathway critical for bacterial well-being. The second part of this work, focused on the role of PG structure, turnover and covalent crosslinks to the OM in vesiculation. We established a direct link between PG degradation and vesiculation: Mutations in the OM lipoprotein nlpI had been previously established as a very strong hypervesiculation phenotype. In the literature NlpI had been associated with another OM lipoprotein, Spr that was recently identified as a PG hydrolase. The data presented here suggest that NlpI acts as a negative regulator of Spr and that the ΔnlpI hypervesiculation phenotype is a result of rampantly degraded PG by Spr. Additionally, we found that changes in PG structure and turnover correlate with altered vesiculation levels, as well as non-canonical D-amino acids, which are secreted by numerous bacteria on the onset of stationary phase, being a natural factor to increase OMV production. Furthermore, we discovered an inverse relationship between the concentration of Lpp-mediated, covalent crosslinks and the level of OMV production under conditions of modulated PG metabolism and structure. In contrast, situations that lead to periplasmic accumulation (protein, PG fragments, and LPS) and consequent hypervesiculation the overall OM-PG crosslink concentration appears to be unchanged. Form this work, we conclude that multiple pathways lead to OMV production: Lpp concentration-dependent and bulk driven, Lpp concentration-independent.
Resumo:
This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.
Resumo:
BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
Resumo:
Using longitudinal data, the present study examined change in midlife neuroticism following trauma exposure. Our primary analyses included 670 participants (M(age) = 60.55; 65.22% male, 99.70% Caucasian) who completed the NEO Personality Inventory at ages 42 and 50 and reported their lifetime exposure to traumatic events approximately 10 years later. No differences in pre- and post-trauma neuroticism scores were found among individuals who experienced all of their lifetime traumas in the interval between the personality assessments. Results were instead consistent with normative age-related declines in neuroticism throughout adulthood. Furthermore, longitudinal changes in neuroticism scores did not differ between individuals with and without histories of midlife trauma exposure. Examination of change in neuroticism following life-threatening traumas yielded a comparable pattern of results. Analysis of facet-level scores largely replicated findings from the domain scores. Overall, our findings suggest that neuroticism does not reliably change following exposure to traumatic events in middle adulthood. Supplemental analyses indicated that individuals exposed to life-threatening traumas in childhood or adolescence reported higher midlife neuroticism than individuals who experienced severe traumas in adulthood. Life-threatening traumatic events encountered early in life may have a more pronounced impact on adulthood personality than recent traumatic events.