2 resultados para Protein Fluorescence

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrostatic interactions are of fundamental importance in determining the structure and stability of macromolecules. For example, charge-charge interactions modulate the folding and binding of proteins and influence protein solubility. Electrostatic interactions are highly variable and can be both favorable and unfavorable. The ability to quantify these interactions is challenging but vital to understanding the detailed balance and major roles that they have in different proteins and biological processes. Measuring pKa values of ionizable groups provides a sensitive method for experimentally probing the electrostatic properties of a protein.

pKa values report the free energy of site-specific proton binding and provide a direct means of studying protein folding and pH-dependent stability. Using a combination of NMR, circular dichroism, and fluorescence spectroscopy along with singular value decomposition, we investigated the contributions of electrostatic interactions to the thermodynamic stability and folding of the protein subunit of Bacillus subtilis ribonuclease P, P protein. Taken together, the results suggest that unfavorable electrostatics alone do not account for the fact that P protein is intrinsically unfolded in the absence of ligand because the pKa differences observed between the folded and unfolded state are small. Presumably, multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Repetitive Ca2+ transients in dendritic spines induce various forms of synaptic plasticity by transmitting information encoded in their frequency and amplitude. CaMKII plays a critical role in decoding these Ca2+ signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ decoding in spines remain elusive. Here, I measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. This signal integration, at the time scale of seconds, critically depended on Thr286 phosphorylation. In the absence of Thr286 phosphorylation, only by increasing the frequency of repetitive Ca2+ elevations could high peak CaMKII activity or plasticity be induced. In addition, I measured the association between CaMKII and Ca2+/CaM during spine plasticity induction. Unlike CaMKII activity, association of Ca2+/CaM to CaMKII plateaued at the first Ca2+ elevation event. This result indicated that integration of Ca2+ signals was initiated by the binding of Ca2+/CaM and amplified by the subsequent increases in Thr286-phosphorylated form of CaMKII. Together, these findings demonstrate that CaMKII functions as a leaky integrator of repetitive Ca2+ signals during the induction of synaptic plasticity, and that Thr286 phosphorylation is critical for defining the frequencies of such integration.