4 resultados para Proportional representation
em Duke University
Resumo:
Protocorporatist West European countries in which economic interests were collectively organized adopted PR in the first quarter of the twentieth century, whereas liberal countries in which economic interests were not collectively organized did not. Political parties, as Marcus Kreuzer points out, choose electoral systems. So how do economic interests translate into party political incentives to adopt electoral reform? We argue that parties in protocorporatist countries were representative of and closely linked to economic interests. As electoral competition in single member districts increased sharply up to World War I, great difficulties resulted for the representative parties whose leaders were seen as interest committed. They could not credibly compete for votes outside their interest without leadership changes or reductions in interest influence. Proportional representation offered an obvious solution, allowing parties to target their own voters and their organized interest to continue effective influence in the legislature. In each respect, the opposite was true of liberal countries. Data on party preferences strongly confirm this model. (Kreuzer's historical criticisms are largely incorrect, as shown in detail in the online supplementary Appendix.). © 2010 American Political Science Association.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows.
Resumo:
Phenomenologically, humans effectively label and report feeling distinct emotions, yet the extent to which emotions are represented categorically in nervous system activity is controversial. Theoretical accounts differ in this regard, some positing distinct emotional experiences emerge from a dimensional representation (e.g., along axes of valence and arousal) whereas others propose emotions are natural categories, with dedicated neural bases and associated response profiles. This dissertation aims to empirically assess these theoretical accounts by examining how emotions are represented (either as disjoint categories or as points along continuous dimensions) in autonomic and central nervous system activity by integrating psychophysiological recording and functional neuroimaging with machine-learning based analytical methods. Results demonstrate that experientially, emotional events are well-characterized both along dimensional and categorical frameworks. Measures of central and peripheral responding discriminate among emotion categories, but are largely independent of valence and arousal. These findings suggest dimensional and categorical aspects of emotional experience are driven by separable neural substrates and demonstrate that emotional states can be objectively quantified on the basis of nervous system activity.