2 resultados para Project 2001-010-C : Investment Decision Framework for Infrastructure Assets Management
em Duke University
Resumo:
Context can have a powerful influence on decision-making strategies in humans. In particular, people sometimes shift their economic preferences depending on the broader social context, such as the presence of potential competitors or mating partners. Despite the important role of competition in primate conspecific interactions, as well as evidence that competitive social contexts impact primates' social cognitive skills, there has been little study of how social context influences the strategies that nonhumans show when making decisions about the value of resources. Here we investigate the impact of social context on preferences for risk (variability in payoffs) in our two closest phylogenetic relatives, chimpanzees, Pan troglodytes, and bonobos, Pan paniscus. In a first study, we examine the impact of competition on patterns of risky choice. In a second study, we examine whether a positive play context affects risky choices. We find that (1) apes are more likely to choose the risky option when making decisions in a competitive context; and (2) the play context did not influence their risk preferences. Overall these results suggest that some types of social contexts can shift patterns of decision making in nonhuman apes, much like in humans. Comparative studies of chimpanzees and bonobos can therefore help illuminate the evolutionary processes shaping human economic behaviour. © 2012 The Association for the Study of Animal Behaviour.
Resumo:
INTRODUCTION: The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. METHOD: Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. FRAMEWORK: An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. NEXT STEPS: We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use.