4 resultados para Program performance
em Duke University
Resumo:
© 2015 IEEE.Although definition of single-program benchmarks is relatively straight-forward-a benchmark is a program plus a specific input-definition of multi-program benchmarks is more complex. Each program may have a different runtime and they may have different interactions depending on how they align with each other. While prior work has focused on sampling multiprogram benchmarks, little attention has been paid to defining the benchmarks in their entirety. In this work, we propose a four-tuple that formally defines multi-program benchmarks in a well-defined way. We then examine how four different classes of benchmarks created by varying the elements of this tuple align with real-world use-cases. We evaluate the impact of these variations on real hardware, and see drastic variations in results between different benchmarks constructed from the same programs. Notable differences include significant speedups versus slowdowns (e.g., +57% vs -5% or +26% vs -18%), and large differences in magnitude even when the results are in the same direction (e.g., 67% versus 11%).
Resumo:
BACKGROUND: Incorporation of multiple enrichment biomarkers into prospective clinical trials is an active area of investigation, but the factors that determine clinical trial enrollment following a molecular prescreening program have not been assessed. PATIENTS AND METHODS: Patients with 5-fluorouracil-refractory metastatic colorectal cancer at the MD Anderson Cancer Center were offered screening in the Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC) program to identify eligibility for companion phase I or II clinical trials with a therapy targeted to an aberration detected in the patient, based on testing by immunohistochemistry, targeted gene sequencing panels, and CpG island methylation phenotype assays. RESULTS: Between August 2010 and December 2013, 484 patients were enrolled, 458 (95%) had a biomarker result, and 157 (32%) were enrolled on a clinical trial (92 on biomarker-selected and 65 on nonbiomarker selected). Of the 458 patients with a biomarker result, enrollment on biomarker-selected clinical trials was ninefold higher for predefined ATTACC-companion clinical trials as opposed to nonpredefined biomarker-selected clinical trials, 17.9% versus 2%, P < 0.001. Factors that correlated positively with trial enrollment in multivariate analysis were higher performance status, older age, lack of standard of care therapy, established patient at MD Anderson, and the presence of an eligible biomarker for an ATTACC-companion study. Early molecular screening did result in a higher rate of patients with remaining standard of care therapy enrolling on ATTACC-companion clinical trials, 45.1%, in contrast to nonpredefined clinical trials, 22.7%; odds ratio 3.1, P = 0.002. CONCLUSIONS: Though early molecular prescreening for predefined clinical trials resulted in an increase rate of trial enrollment of nonrefractory patients, the majority of patients enrolled on clinical trials were refractory to standard of care therapy. Within molecular prescreening programs, tailoring screening for preidentified and open clinical trials, temporally linking screening to treatment and optimizing both patient and physician engagement are efforts likely to improve enrollment on biomarker-selected clinical trials. CLINICAL TRIALS NUMBER: The study NCT number is NCT01196130.
Resumo:
This study examined the intergenerational effects of parental conviction of a substance-related charge on children's academic performance and, conditional on a conviction, whether completion of an adult drug treatment court (DTC) program was associated with improved school performance. State administrative data from North Carolina courts, birth records, and school records were linked for 2005-2012. Math and reading end-of-grade test scores and absenteeism were examined for 5 groups of children, those with parents who: were not convicted on any criminal charge, were convicted on a substance-related charge and not referred by a court to a DTC, were referred to a DTC but did not enroll, enrolled in a DTC but did not complete, and completed a DTC program. Accounting for demographic and socioeconomic factors, the school performance of children whose parents were convicted of a substance-related offense was worse than that of children whose parents were not convicted on any charge. These differences were statistically significant but substantially reduced after controlling for socioeconomic characteristics; for example, mother's educational attainment. We found no evidence that parent participation in an adult DTC program led to improved school performance of their children. While the children of convicted parents fared worse on average, much--but not all--of this difference was attributed to socioeconomic factors, with the result that parental conviction remained a risk factor for poorer school performance. Even though adult DTCs have been shown to have other benefits, we could detect no intergenerational benefit in improved school performance of their children.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.