6 resultados para Prochilodus scrofa

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca(2+) transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acellular dermal matrices (ADM) are commonly used in reconstructive procedures and rely on host cell invasion to become incorporated into host tissues. We investigated different approaches to adipose-derived stem cells (ASCs) engraftment into ADM to enhance this process. Lewis rat adipose-derived stem cells were isolated and grafted (3.0 × 10(5) cells) to porcine ADM disks (1.5 mm thick × 6 mm diameter) using either passive onlay or interstitial injection seeding techniques. Following incubation, seeding efficiency and seeded cell viability were measured in vitro. In addition, Eighteen Lewis rats underwent subcutaneous placement of ADM disk either as control or seeded with PKH67 labeled ASCs. ADM disks were seeded with ASCs using either onlay or injection techniques. On day 7 and or 14, ADM disks were harvested and analyzed for host cell infiltration. Onlay and injection techniques resulted in unique seeding patterns; however cell seeding efficiency and cell viability were similar. In-vivo studies showed significantly increased host cell infiltration towards the ASCs foci following injection seeding in comparison to control group (p < 0.05). Moreover, regional endothelial cell invasion was significantly greater in ASCs injected grafts in comparison to onlay seeding (p < 0.05). ADM can successfully be engrafted with ASCs. Interstitial engraftment of ASCs into ADM via injection enhances regional infiltration of host cells and angiogenesis, whereas onlay seeding showed relatively broad and superficial cell infiltration. These findings may be applied to improve the incorporation of avascular engineered constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).