4 resultados para Print on demand
em Duke University
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
Scheduling a set of jobs over a collection of machines to optimize a certain quality-of-service measure is one of the most important research topics in both computer science theory and practice. In this thesis, we design algorithms that optimize {\em flow-time} (or delay) of jobs for scheduling problems that arise in a wide range of applications. We consider the classical model of unrelated machine scheduling and resolve several long standing open problems; we introduce new models that capture the novel algorithmic challenges in scheduling jobs in data centers or large clusters; we study the effect of selfish behavior in distributed and decentralized environments; we design algorithms that strive to balance the energy consumption and performance.
The technically interesting aspect of our work is the surprising connections we establish between approximation and online algorithms, economics, game theory, and queuing theory. It is the interplay of ideas from these different areas that lies at the heart of most of the algorithms presented in this thesis.
The main contributions of the thesis can be placed in one of the following categories.
1. Classical Unrelated Machine Scheduling: We give the first polygorithmic approximation algorithms for minimizing the average flow-time and minimizing the maximum flow-time in the offline setting. In the online and non-clairvoyant setting, we design the first non-clairvoyant algorithm for minimizing the weighted flow-time in the resource augmentation model. Our work introduces iterated rounding technique for the offline flow-time optimization, and gives the first framework to analyze non-clairvoyant algorithms for unrelated machines.
2. Polytope Scheduling Problem: To capture the multidimensional nature of the scheduling problems that arise in practice, we introduce Polytope Scheduling Problem (\psp). The \psp problem generalizes almost all classical scheduling models, and also captures hitherto unstudied scheduling problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional resource allocation. We design several competitive algorithms for the \psp problem and its variants for the objectives of minimizing the flow-time and completion time. Our work establishes many interesting connections between scheduling and market equilibrium concepts, fairness and non-clairvoyant scheduling, and queuing theoretic notion of stability and resource augmentation analysis.
3. Energy Efficient Scheduling: We give the first non-clairvoyant algorithm for minimizing the total flow-time + energy in the online and resource augmentation model for the most general setting of unrelated machines.
4. Selfish Scheduling: We study the effect of selfish behavior in scheduling and routing problems. We define a fairness index for scheduling policies called {\em bounded stretch}, and show that for the objective of minimizing the average (weighted) completion time, policies with small stretch lead to equilibrium outcomes with small price of anarchy. Our work gives the first linear/ convex programming duality based framework to bound the price of anarchy for general equilibrium concepts such as coarse correlated equilibrium.
Resumo:
Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is
hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation
sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand,
DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.
The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They
were interesting because they bring to the table an on-demand energy/information supply mechanism.
The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.
The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.
The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.
The hidden energy and information coupled with
programmability provides another functionality, of selectively choosing what reactions to hide and
what reactions to allow to proceed, that helps develop a topological sequence of events.
Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different
molecular devices using DNA hairpins, and experimentally validate them in the
laboratory. 1) The first device: A
novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second
device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct
regardless of differences in the arrival time of different inputs.
b) renewable circuits which can be used multiple times without major degradation of the gate motifs
(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).
3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances
its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly.
4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification
of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite
amount of gain.
Nucleic acid circuits with the ability
to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.
We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome
to make these truly functional.
Resumo:
Secure Access For Everyone (SAFE), is an integrated system for managing trust
using a logic-based declarative language. Logical trust systems authorize each
request by constructing a proof from a context---a set of authenticated logic
statements representing credentials and policies issued by various principals
in a networked system. A key barrier to practical use of logical trust systems
is the problem of managing proof contexts: identifying, validating, and
assembling the credentials and policies that are relevant to each trust
decision.
SAFE addresses this challenge by (i) proposing a distributed authenticated data
repository for storing the credentials and policies; (ii) introducing a
programmable credential discovery and assembly layer that generates the
appropriate tailored context for a given request. The authenticated data
repository is built upon a scalable key-value store with its contents named by
secure identifiers and certified by the issuing principal. The SAFE language
provides scripting primitives to generate and organize logic sets representing
credentials and policies, materialize the logic sets as certificates, and link
them to reflect delegation patterns in the application. The authorizer fetches
the logic sets on demand, then validates and caches them locally for further
use. Upon each request, the authorizer constructs the tailored proof context
and provides it to the SAFE inference for certified validation.
Delegation-driven credential linking with certified data distribution provides
flexible and dynamic policy control enabling security and trust infrastructure
to be agile, while addressing the perennial problems related to today's
certificate infrastructure: automated credential discovery, scalable
revocation, and issuing credentials without relying on centralized authority.
We envision SAFE as a new foundation for building secure network systems. We
used SAFE to build secure services based on case studies drawn from practice:
(i) a secure name service resolver similar to DNS that resolves a name across
multi-domain federated systems; (ii) a secure proxy shim to delegate access
control decisions in a key-value store; (iii) an authorization module for a
networked infrastructure-as-a-service system with a federated trust structure
(NSF GENI initiative); and (iv) a secure cooperative data analytics service
that adheres to individual secrecy constraints while disclosing the data. We
present empirical evaluation based on these case studies and demonstrate that
SAFE supports a wide range of applications with low overhead.