4 resultados para Pressure pain threshold

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the relationship between NF-κB activity, cytokine levels, and pain sensitivities in a rodent model of osteoarthritis (OA). METHODS: OA was induced in transgenic NF-κB-luciferase reporter mice via intraarticular injection of monosodium iodoacetate (MIA). Using luminescence imaging we evaluated the temporal kinetics of NF-κB activity and its relationship to the development of pain sensitivities and serum cytokine levels in this model. RESULTS: MIA induced a transient increase in joint-related NF-κB activity at early time points (day 3 after injection) and an associated biphasic pain response (mechanical allodynia). NF-κB activity, serum interleukin-6 (IL-6), IL-1β, and IL-10 levels accounted for ∼75% of the variability in pain-related mechanical sensitivities in this model. Specifically, NF-κB activity was strongly correlated with mechanical allodynia and serum IL-6 levels in the inflammatory pain phase of this model (day 3), while serum IL-1β was strongly correlated with pain sensitivities in the chronic pain phase of the model (day 28). CONCLUSION: Our findings suggest that NF-κB activity, IL-6, and IL-1β may play distinct roles in pain sensitivity development in this model of arthritis and may distinguish the acute pain phase from the chronic pain phase. This study establishes luminescence imaging of NF-κB activity as a novel imaging biomarker of pain sensitivities in this model of OA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Mechanical and in particular tactile allodynia is a hallmark of chronic pain in which innocuous touch becomes painful. Previous cholera toxin B (CTB)-based neural tracing experiments and electrophysiology studies had suggested that aberrant axon sprouting from touch sensory afferents into pain-processing laminae after injury is a possible anatomical substrate underlying mechanical allodynia. This hypothesis was later challenged by experiments using intra-axonal labeling of A-fiber neurons, as well as single-neuron labeling of electrophysiologically identified sensory neurons. However, no studies have used genetically labeled neurons to examine this issue, and most studies were performed on spinal but not trigeminal sensory neurons which are the relevant neurons for orofacial pain, where allodynia oftentimes plays a dominant clinical role. FINDINGS: We recently discovered that parvalbumin::Cre (Pv::Cre) labels two types of Aβ touch neurons in trigeminal ganglion. Using a Pv::CreER driver and a Cre-dependent reporter mouse, we specifically labeled these Aβ trigeminal touch afferents by timed taxomifen injection prior to inflammation or infraorbital nerve injury (ION transection). We then examined the peripheral and central projections of labeled axons into the brainstem caudalis nucleus after injuries vs controls. We found no evidence for ectopic sprouting of Pv::CreER labeled trigeminal Aβ axons into the superficial trigeminal noci-receptive laminae. Furthermore, there was also no evidence for peripheral sprouting. CONCLUSIONS: CreER-based labeling prior to injury precluded the issue of phenotypic changes of neurons after injury. Our results suggest that touch allodynia in chronic orofacial pain is unlikely caused by ectopic sprouting of Aβ trigeminal afferents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morphine induces antinociception by activating mu opioid receptors (muORs) in spinal and supraspinal regions of the CNS. (Beta)arrestin-2 (beta)arr2), a G-protein-coupled receptor-regulating protein, regulates the muOR in vivo. We have shown previously that mice lacking (beta)arr2 experience enhanced morphine-induced analgesia and do not become tolerant to morphine as determined in the hot-plate test, a paradigm that primarily assesses supraspinal pain responsiveness. To determine the general applicability of the (beta)arr2-muOR interaction in other neuronal systems, we have, in the present study, tested (beta)arr2 knock-out ((beta)arr2-KO) mice using the warm water tail-immersion paradigm, which primarily assesses spinal reflexes to painful thermal stimuli. In this test, the (beta)arr2-KO mice have greater basal nociceptive thresholds and markedly enhanced sensitivity to morphine. Interestingly, however, after a delayed onset, they do ultimately develop morphine tolerance, although to a lesser degree than the wild-type (WT) controls. In the (beta)arr2-KO but not WT mice, morphine tolerance can be completely reversed with a low dose of the classical protein kinase C (PKC) inhibitor chelerythrine. These findings provide in vivo evidence that the muOR is differentially regulated in diverse regions of the CNS. Furthermore, although (beta)arr2 appears to be the most prominent and proximal determinant of muOR desensitization and morphine tolerance, in the absence of this mechanism, the contributions of a PKC-dependent regulatory system become readily apparent.