6 resultados para Potential of zero charge

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.