7 resultados para Potential methods

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The relationship between mental health and climate change are poorly understood. Participatory methods represent ethical, feasible, and culturally-appropriate approaches to engage community members for mental health promotion in the context of climate change. Aim: Photovoice, a community-based participatory research methodology uses images as a tool to deconstruct problems by posing meaningful questions in a community to find actionable solutions. This community-enhancing technique was used to elicit experiences of climate change among women in rural Nepal and the association of climate change with mental health. Subjects and methods: Mixed-methods, including in-depth interviews and self-report questionnaires, were used to evaluate the experience of 10 women participating in photovoice. Quantitative tools included Nepali versions of Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) and a resilience scale. Results: In qualitative interviews after photovoice, women reported climate change adaptation and behavior change strategies including environmental knowledge-sharing, group mobilization, and increased hygiene practices. Women also reported beneficial effects for mental health. The mean BDI score prior to photovoice was 23.20 (SD=9.00) and two weeks after completion of photovoice, the mean BDI score was 7.40 (SD=7.93), paired t-test = 8.02, p<.001, n=10. Conclusion: Photovoice, as a participatory method, has potential to inform resources, adaptive strategies and potential interventions to for climate change and mental health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this work was to investigate the breast dose saving potential of a breast positioning technique (BP) for thoracic CT examinations with organ-based tube current modulation (OTCM).

Methods: The study included 13 female patient models (XCAT, age range: 27-65 y.o., weight range: 52 to 105.8 kg). Each model was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were further deformed, emulating a BP that would constrain the breasts within 120° anterior tube current (mA) reduction zone. The tube current value of the CT examination was modeled using an attenuation-based program, which reduces the radiation dose to 20% in the anterior region with a corresponding increase to the posterior region. A validated Monte Carlo program was used to estimate organ doses with a typical clinical system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDIvol were compared between attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCMBP).

Results: On average, compared to ATCM, OTCM reduced the breast dose by 19.3±4.5%, whereas OTCMBP reduced breast dose by 36.6±6.9% (an additional 21.3±7.3%). The dose saving of OTCMBP was more significant for larger breasts (on average 32, 38, and 44% reduction for 0.5, 1.5, and 2.5 kg breasts, respectively). Compared to ATCM, OTCMBP also reduced thymus and heart dose by 12.1 ± 6.3% and 13.1 ± 5.4%, respectively.

Conclusions: In thoracic CT examinations, OTCM with a breast positioning technique can markedly reduce unnecessary exposure to the radiosensitive organs in the anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.

The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.

Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: Limitations in methods for the rapid diagnosis of hospital-acquired infections often delay initiation of effective antimicrobial therapy. New diagnostic approaches offer potential clinical and cost-related improvements in the management of these infections. OBJECTIVES: We developed a decision modeling framework to assess the potential cost-effectiveness of a rapid biomarker assay to identify hospital-acquired infection in high-risk patients earlier than standard diagnostic testing. METHODS: The framework includes parameters representing rates of infection, rates of delayed appropriate therapy, and impact of delayed therapy on mortality, along with assumptions about diagnostic test characteristics and their impact on delayed therapy and length of stay. Parameter estimates were based on contemporary, published studies and supplemented with data from a four-site, observational, clinical study. Extensive sensitivity analyses were performed. The base-case analysis assumed 17.6% of ventilated patients and 11.2% of nonventilated patients develop hospital-acquired infection and that 28.7% of patients with hospital-acquired infection experience delays in appropriate antibiotic therapy with standard care. We assumed this percentage decreased by 50% (to 14.4%) among patients with true-positive results and increased by 50% (to 43.1%) among patients with false-negative results using a hypothetical biomarker assay. Cost of testing was set at $110/d. MEASUREMENTS AND MAIN RESULTS: In the base-case analysis, among ventilated patients, daily diagnostic testing starting on admission reduced inpatient mortality from 12.3 to 11.9% and increased mean costs by $1,640 per patient, resulting in an incremental cost-effectiveness ratio of $21,389 per life-year saved. Among nonventilated patients, inpatient mortality decreased from 7.3 to 7.1% and costs increased by $1,381 with diagnostic testing. The resulting incremental cost-effectiveness ratio was $42,325 per life-year saved. Threshold analyses revealed the probabilities of developing hospital-acquired infection in ventilated and nonventilated patients could be as low as 8.4 and 9.8%, respectively, to maintain incremental cost-effectiveness ratios less than $50,000 per life-year saved. CONCLUSIONS: Development and use of serial diagnostic testing that reduces the proportion of patients with delays in appropriate antibiotic therapy for hospital-acquired infections could reduce inpatient mortality. The model presented here offers a cost-effectiveness framework for future test development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To demonstrate the application of causal inference methods to observational data in the obstetrics and gynecology field, particularly causal modeling and semi-parametric estimation. BACKGROUND: Human immunodeficiency virus (HIV)-positive women are at increased risk for cervical cancer and its treatable precursors. Determining whether potential risk factors such as hormonal contraception are true causes is critical for informing public health strategies as longevity increases among HIV-positive women in developing countries. METHODS: We developed a causal model of the factors related to combined oral contraceptive (COC) use and cervical intraepithelial neoplasia 2 or greater (CIN2+) and modified the model to fit the observed data, drawn from women in a cervical cancer screening program at HIV clinics in Kenya. Assumptions required for substantiation of a causal relationship were assessed. We estimated the population-level association using semi-parametric methods: g-computation, inverse probability of treatment weighting, and targeted maximum likelihood estimation. RESULTS: We identified 2 plausible causal paths from COC use to CIN2+: via HPV infection and via increased disease progression. Study data enabled estimation of the latter only with strong assumptions of no unmeasured confounding. Of 2,519 women under 50 screened per protocol, 219 (8.7%) were diagnosed with CIN2+. Marginal modeling suggested a 2.9% (95% confidence interval 0.1%, 6.9%) increase in prevalence of CIN2+ if all women under 50 were exposed to COC; the significance of this association was sensitive to method of estimation and exposure misclassification. CONCLUSION: Use of causal modeling enabled clear representation of the causal relationship of interest and the assumptions required to estimate that relationship from the observed data. Semi-parametric estimation methods provided flexibility and reduced reliance on correct model form. Although selected results suggest an increased prevalence of CIN2+ associated with COC, evidence is insufficient to conclude causality. Priority areas for future studies to better satisfy causal criteria are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.

In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.

We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract

Continuous variable is one of the major data types collected by the survey organizations. It can be incomplete such that the data collectors need to fill in the missingness. Or, it can contain sensitive information which needs protection from re-identification. One of the approaches to protect continuous microdata is to sum them up according to different cells of features. In this thesis, I represents novel methods of multiple imputation (MI) that can be applied to impute missing values and synthesize confidential values for continuous and magnitude data.

The first method is for limiting the disclosure risk of the continuous microdata whose marginal sums are fixed. The motivation for developing such a method comes from the magnitude tables of non-negative integer values in economic surveys. I present approaches based on a mixture of Poisson distributions to describe the multivariate distribution so that the marginals of the synthetic data are guaranteed to sum to the original totals. At the same time, I present methods for assessing disclosure risks in releasing such synthetic magnitude microdata. The illustration on a survey of manufacturing establishments shows that the disclosure risks are low while the information loss is acceptable.

The second method is for releasing synthetic continuous micro data by a nonstandard MI method. Traditionally, MI fits a model on the confidential values and then generates multiple synthetic datasets from this model. Its disclosure risk tends to be high, especially when the original data contain extreme values. I present a nonstandard MI approach conditioned on the protective intervals. Its basic idea is to estimate the model parameters from these intervals rather than the confidential values. The encouraging results of simple simulation studies suggest the potential of this new approach in limiting the posterior disclosure risk.

The third method is for imputing missing values in continuous and categorical variables. It is extended from a hierarchically coupled mixture model with local dependence. However, the new method separates the variables into non-focused (e.g., almost-fully-observed) and focused (e.g., missing-a-lot) ones. The sub-model structure of focused variables is more complex than that of non-focused ones. At the same time, their cluster indicators are linked together by tensor factorization and the focused continuous variables depend locally on non-focused values. The model properties suggest that moving the strongly associated non-focused variables to the side of focused ones can help to improve estimation accuracy, which is examined by several simulation studies. And this method is applied to data from the American Community Survey.