1 resultado para Portland and Oxford Central Railroad Company.
em Duke University
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (16)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (6)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (1)
- Brock University, Canada (27)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (20)
- Center for Jewish History Digital Collections (1)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (6)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (13)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (28)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (31)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (44)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (2)
- Université de Montréal, Canada (4)
- University of Michigan (346)
- University of Queensland eSpace - Australia (6)
- WestminsterResearch - UK (4)
Resumo:
Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Fréchet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension 1 and hence measure 0) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine.We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky). © Institute of Mathematical Statistics, 2013.