3 resultados para Poets, Welsh
em Duke University
Resumo:
Alzheimer's disease is a complex and progressive neurodegenerative disease leading to loss of memory, cognitive impairment, and ultimately death. To date, six large-scale genome-wide association studies have been conducted to identify SNPs that influence disease predisposition. These studies have confirmed the well-known APOE epsilon4 risk allele, identified a novel variant that influences disease risk within the APOE epsilon4 population, found a SNP that modifies the age of disease onset, as well as reported the first sex-linked susceptibility variant. Here we report a genome-wide scan of Alzheimer's disease in a set of 331 cases and 368 controls, extending analyses for the first time to include assessments of copy number variation. In this analysis, no new SNPs show genome-wide significance. We also screened for effects of copy number variation, and while nothing was significant, a duplication in CHRNA7 appears interesting enough to warrant further investigation.
Resumo:
The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.
Resumo:
The naming impairments in Alzheimer's disease (AD) have been attributed to a variety of cognitive processing deficits, including impairments in semantic memory, visual perception, and lexical access. To further understand the underlying biological basis of the naming failures in AD, the present investigation examined the relationship of various classes of naming errors to regional brain measures of cerebral glucose metabolism as measured with 18 F-Fluoro-2-deoxyglucose (FDG) and positron emission tomography (PET). Errors committed on a visual naming test were categorized according to a cognitive processing schema and then examined in relationship to metabolism within specific brain regions. The results revealed an association of semantic errors with glucose metabolism in the frontal and temporal regions. Language access errors, such as circumlocutions, and word blocking nonresponses were associated with decreased metabolism in areas within the left hemisphere. Visuoperceptive errors were related to right inferior parietal metabolic function. The findings suggest that specific brain areas mediate the perceptual, semantic, and lexical processing demands of visual naming and that visual naming problems in dementia are related to dysfunction in specific neural circuits.