12 resultados para Plasticity

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the gain and the loss of flexibility in the development of phenotypes have led to an increased diversity of physical forms in nematode worms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Given the potential importance of epithelial plasticity (EP) to cancer metastasis, we sought to investigate biomarkers related to EP in men with localized prostate cancer (PC) for the association with time to PSA recurrence and other clinical outcomes after surgery. METHODS: Men with localized PC treated with radical prostatectomy at the Durham VA Medical Center and whose prostatectomy tissues were included in a tissue microarray (TMA) linked to long-term outcomes. We performed immunohistochemical studies using validated antibodies against E-cadherin and Ki-67 and mesenchymal biomarkers including N-cadherin, vimentin, SNAIL, ZEB1 and TWIST. Association studies were conducted for each biomarker with baseline clinical/pathologic characteristics an risk of PSA recurrence over time. RESULTS: Two hundred and five men contributed TMA tissue and had long-term follow-up (median 11 years). Forty-three percent had PSA recurrence; three died of PC. The majority had high E-cadherin expression (86%); 14% had low/absent E-cadherin expression. N-cadherin was rarely expressed (<4%) and we were unable to identify an E-to-N-cadherin switch as independently prognostic. No associations with clinical risk group, PSA recurrence or Gleason sum were noted for SNAIL, ZEB1, vimentin or TWIST, despite heterogeneous expression between patients. We observed an association of higher Ki-67 expression with Gleason sum (P=0.043), National Comprehensive Cancer Network risk (P=0.013) and PSA recurrence (hazard ratio 1.07, P=0.016). CONCLUSIONS: The expression of EP biomarkers in this cohort of men with a low risk of PC-specific mortality was not associated with aggressive features or PSA relapse after surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cascade that culminates in macrometastases is thought to be mediated by phenotypic plasticity, including epithelial-mesenchymal and mesenchymal-epithelial transitions (EMT and MET). Although there is substantial support for the role of EMT in driving cancer cell invasion and dissemination, much less is known about the importance of MET in the later steps of metastatic colonization. We created novel reporters, which integrate transcriptional and post-transcriptional regulation, to test whether MET is required for metastasis in multiple in vivo cancer models. In a model of carcinosarcoma, metastasis occurred via an MET-dependent pathway; however, in two prostate carcinoma models, metastatic colonization was MET independent. Our results provide evidence for both MET-dependent and MET-independent metastatic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repetitive Ca2+ transients in dendritic spines induce various forms of synaptic plasticity by transmitting information encoded in their frequency and amplitude. CaMKII plays a critical role in decoding these Ca2+ signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ decoding in spines remain elusive. Here, I measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. This signal integration, at the time scale of seconds, critically depended on Thr286 phosphorylation. In the absence of Thr286 phosphorylation, only by increasing the frequency of repetitive Ca2+ elevations could high peak CaMKII activity or plasticity be induced. In addition, I measured the association between CaMKII and Ca2+/CaM during spine plasticity induction. Unlike CaMKII activity, association of Ca2+/CaM to CaMKII plateaued at the first Ca2+ elevation event. This result indicated that integration of Ca2+ signals was initiated by the binding of Ca2+/CaM and amplified by the subsequent increases in Thr286-phosphorylated form of CaMKII. Together, these findings demonstrate that CaMKII functions as a leaky integrator of repetitive Ca2+ signals during the induction of synaptic plasticity, and that Thr286 phosphorylation is critical for defining the frequencies of such integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional calcium/calmodulin dependent protein kinases (CaMKs) are key regulators of spine structural plasticity and long-term potentiation (LTP) in neurons. CaMKs have promiscuous and overlapping substrate recognition motifs, and are distinguished in their regulatory role based on differences in the spatiotemporal dynamics of activity. While the function and activity of CaMKII in synaptic plasticity has been extensively studied, that of CaMKI, another major class of CaMK required for LTP, still remain elusive.

Here, we develop a Förster’s Resonance Energy Transfer (FRET) based sensor to measure the spatiotemporal activity dynamics of CaMK1. We monitored CaMKI activity using 2-photon fluorescence lifetime imaging, while inducing LTP in single dendritic spines of rat (Rattus Norvegicus, strain Sprague Dawley) hippocampal CA1 pyramidal neurons using 2-photon glutamate uncaging. Using RNA-interference and pharmacological means, we also characterize the role of CaMKI during spine structural plasticity.

We found that CaMKI was rapidly and transiently activated with a rise time of ~0.3 s and decay time of ~1 s in response to each uncaging pulse. Activity of CaMKI spread out of the spine. Phosphorylation of CaMKI by CaMKK was required for this spreading and for the initial phase of structural LTP. Combined with previous data showing that CaMKII is restricted to the stimulated spine and required for long-term maintenance of structural LTP, these results suggest that CaMK diversity allows the same incoming signal – calcium – to independently regulate distinct phases of LTP by activating different CaMKs with distinct spatiotemporal dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 The Authors. Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED) pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network. Meng et al. find that activation of the cell death pathway in C. elegans neurons contributes to selective elimination of synapses through disassembly of the actin filament network.