6 resultados para Plasma, MAE
em Duke University
Resumo:
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Resumo:
1. Plasma lipids and lipoproteins of free-ranging howling monkeys from Costa Rica (Alouatta palliata), aged 5 months to 23 years, were characterized. 2. High density lipoproteins were lipid-rich, similar to HDL2 of human plasma. 3. Fatty acid compositions of major lipid classes of very low, low and high density lipoproteins differed among social groups, possibly due to both dietary and genetic factors. 4. Low and high density lipoprotein phospholipids were enriched in phosphatidylethanolamine. 5. Howler plasma cross reacted with antihuman apoA-I antibodies but not with antihuman LDL antibodies. 6. No dimeric form of apoA-II was present, unlike human apoA-II.
Resumo:
BACKGROUND: Ritonavir inhibition of cytochrome P450 3A4 decreases the elimination clearance of fentanyl by 67%. We used a pharmacokinetic model developed from published data to simulate the effect of sample patient-controlled epidural labor analgesic regimens on plasma fentanyl concentrations in the absence and presence of ritonavir-induced cytochrome P450 3A4 inhibition. METHODS: Fentanyl absorption from the epidural space was modeled using tanks-in-series delay elements. Systemic fentanyl disposition was described using a three-compartment pharmacokinetic model. Parameters for epidural drug absorption were estimated by fitting the model to reported plasma fentanyl concentrations measured after epidural administration. The validity of the model was assessed by comparing predicted plasma concentrations after epidural administration to published data. The effect of ritonavir was modeled as a 67% decrease in fentanyl elimination clearance. Plasma fentanyl concentrations were simulated for six sample patient-controlled epidural labor analgesic regimens over 24 h using ritonavir and control models. Simulated data were analyzed to determine if plasma fentanyl concentrations producing a 50% decrease in minute ventilation (6.1 ng/mL) were achieved. RESULTS: Simulated plasma fentanyl concentrations in the ritonavir group were higher than those in the control group for all sample labor analgesic regimens. Maximum plasma fentanyl concentrations were 1.8 ng/mL and 3.4 ng/mL for the normal and ritonavir simulations, respectively, and did not reach concentrations associated with 50% decrease in minute ventilation. CONCLUSION: Our model predicts that even with maximal clinical dosing regimens of epidural fentanyl over 24 h, ritonavir-induced cytochrome P450 3A4 inhibition is unlikely to produce plasma fentanyl concentrations associated with a decrease in minute ventilation.
Resumo:
Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.
Resumo:
The early detection of hepatocellular carcinoma (HCC) presents a challenge because of the lack of specific biomarkers. Serum/plasma microRNAs (miRNAs) can discriminate HCC patients from controls. We aimed to identify and evaluate HCC-associated plasma miRNAs originating from the liver as early biomarkers for detecting HCC. In this multicenter three-phase study, we first performed screening using both plasma (HCC before and after liver transplantation or liver hepatectomy) and tissue samples (HCC, para-carcinoma and cirrhotic tissues). Then, we evaluated the diagnostic potential of the miRNAs in two case-control studies (training and validation sets). Finally, we used two prospective cohorts to test the potential of the identified miRNAs for the early detection of HCC. During the screening phase, we identified ten miRNAs, eight of which (miR-20a-5p, miR-25-3p, miR-30a-5p, miR-92a-3p, miR-132-3p, miR-185-5p, miR-320a and miR-324-3p) were significantly overexpressed in the HBV-positive HCC patients compared with the HBV-positive cancer-free controls in both the training and validation sets, with a sensitivity of 0.866 and specificity of 0.646. Furthermore, we assessed the potential for early HCC detection of these eight newly identified miRNAs and three previously reported miRNAs (miR-192-5p, miR-21-5p and miR-375) in two prospective cohorts. Our meta-analysis revealed that four miRNAs (miR-20a-5p, miR-320a, miR-324-3p and miR-375) could be used as preclinical biomarkers (pmeta < 0.05) for HCC. The expression profile of the eight-miRNA panel can be used to discriminate HCC patients from cancer-free controls, and the four-miRNA panel (alone or combined with AFP) could be a blood-based early detection biomarker for HCC screening.