5 resultados para Pipelines--Maintenance and repair

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lungs are vital organs whose airways are lined with a continuous layer of epithelial cells. Epithelial cells in the distal most part of the lung, the alveolar space, are specialized to facilitate gas exchange. Proximal to the alveoli is the airway epithelium, which provides an essential barrier and is the first line of defense against inhaled toxicants, pollutants, and pathogens. Although the postnatal lung is a quiescent organ, it has an inherent ability to regenerate in response to injury. Proper balance between maintaining quiescence and undergoing repair is crucial, with imbalances in these processes leading to fibrosis or tumor development. Stem and progenitor cells are central to maintaining balance, given that they proliferate and renew both themselves and the various differentiated cells of the lung. However, the precise mechanisms regulating quiescence and repair in the lungs are largely unknown. In this dissertation, ionizing radiation is used as a physiologically relevant injury model to better understand the repair process of the airway epithelium. We use in vitro and in vivo mouse models to study the response of a secretory progenitor, the club cell, to various doses and qualities of ionizing radiation. Exposure to radiation found in space environments and in some types of radiotherapy caused clonal expansion of club cells specifically in the most distal branches of the airway epithelium, indicating that the progenitors residing in the terminal bronchioles are radiosensitive. This clonal expansion is due to an increase in p53-dependent apoptosis, senescence, and mitotic defects. Through the course of this work, we discovered that p53 is not only involved in radiation response, but is also a novel regulator of airway epithelial homeostasis. p53 acts in a gene dose-dependent manner to regulate the composition of airway epithelium by maintaining quiescence and regulating differentiation of club progenitor cells in the steady-state lung. The work presented in this dissertation represents an advance in our understanding of the molecular mechanisms underlying maintenance of airway epithelial progenitor cells as well as their repair following ionizing radiation exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centromeres are essential chromosomal loci at which kinetochore formation occurs for spindle fiber attachment during mitosis and meiosis, guiding proper segregation of chromosomes. In humans, centromeres are located at large arrays of alpha satellite DNA, contributing to but not defining centromere function. The histone variant CENP-A assembles at alpha satellite DNA, epigenetically defining the centromere. CENP-A containing chromatin exists as an essential domain composed of blocks of CENP-A nucleosomes interspersed with blocks of H3 nucleosomes, and is surrounded by pericentromeric heterochromatin. In order to maintain genomic stability, the CENP-A domain is propagated epigenetically over each cell division; disruption of propagation is associated with chromosome instabilities such as aneuploidy, found in birth defects and in cancer.

The CENP-A chromatin domain occupies 30-45% of the alpha satellite array, varying in genomic distance according to the underlying array size. However, the molecular mechanisms that control assembly and organization of CENP-A chromatin within its genomic context remain unclear. The domain may shift, expand, or contract, as CENP-A is loaded and dispersed each cell cycle. We hypothesized that in order to maintain genome stability, the centromere is inherited as static chromatin domains, maintaining size and position within the pericentric heterochromatin. Utilizing stretched chromatin fibers, I found that CENP-A chromatin is limited to a sub-region of the alpha satellite array that is fixed in size and location through the cell cycle and across populations.

The average amount of CENP-A at human centromeres is largely consistent, implying that the variation in size of CENP-A domains reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes. Multi-color nascent protein labeling experiments were utilized to examine the distribution and incorporation of distinct pools of CENP-A over several cell cycles. I found that in each cell cycle there is independent CENP-A distribution, occurring equally between sister centromeres across all chromosomes, in similar quantities. Furthermore, centromere inheritance is achieved through specific placement of CENP-A, following an oscillating pattern that fixes the location and size of the CENP-A domain. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere and genome stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention, the cognitive means by which we prioritize the processing of a subset of information, is necessary for operating efficiently and effectively in the world. Thus, a critical theoretical question is how information is selected. In the visual domain, working memory (WM)—which refers to the short-term maintenance and manipulation of information that is no longer accessible by the senses—has been highlighted as an important determinant of what is selected by visual attention. Furthermore, although WM and attention have traditionally been conceived as separate cognitive constructs, an abundance of behavioral and neural evidence indicates that these two domains are in fact intertwined and overlapping. The aim of this dissertation is to better understand the nature of WM and attention, primarily through the phenomenon of memory-based attentional guidance, whereby the active maintenance of items in visual WM reliably biases the deployment of attention to memory-matching items in the visual environment. The research presented here employs a combination of behavioral, functional imaging, and computational modeling techniques that address: (1) WM guidance effects with respect to the traditional dichotomy of top-down versus bottom-up attentional control; (2) under what circumstances the contents of WM impact visual attention; and (3) the broader hypothesis of a predictive and competitive interaction between WM and attention. Collectively, these empirical findings reveal the importance of WM as a distinct factor in attentional control and support current models of multiple-state WM, which may have broader implications for how we select and maintain information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head motion during a Positron Emission Tomography (PET) brain scan can considerably degrade image quality. External motion-tracking devices have proven successful in minimizing this effect, but the associated time, maintenance, and workflow changes inhibit their widespread clinical use. List-mode PET acquisition allows for the retroactive analysis of coincidence events on any time scale throughout a scan, and therefore potentially offers a data-driven motion detection and characterization technique. An algorithm was developed to parse list-mode data, divide the full acquisition into short scan intervals, and calculate the line-of-response (LOR) midpoint average for each interval. These LOR midpoint averages, known as “radioactivity centroids,” were presumed to represent the center of the radioactivity distribution in the scanner, and it was thought that changes in this metric over time would correspond to intra-scan motion.

Several scans were taken of the 3D Hoffman brain phantom on a GE Discovery IQ PET/CT scanner to test the ability of the radioactivity to indicate intra-scan motion. Each scan incrementally surveyed motion in a different degree of freedom (2 translational and 2 rotational). The radioactivity centroids calculated from these scans correlated linearly to phantom positions/orientations. Centroid measurements over 1-second intervals performed on scans with ~1mCi of activity in the center of the field of view had standard deviations of 0.026 cm in the x- and y-dimensions and 0.020 cm in the z-dimension, which demonstrates high precision and repeatability in this metric. Radioactivity centroids are thus shown to successfully represent discrete motions on the submillimeter scale. It is also shown that while the radioactivity centroid can precisely indicate the amount of motion during an acquisition, it fails to distinguish what type of motion occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acids (DNA and RNA) play essential roles in the central dogma of biology for the storage and transfer of genetic information. The unique chemical and conformational structures of nucleic acids – the double helix composed of complementary Watson-Crick base pairs, provide the structural basis to carry out their biological functions. DNA double helix can dynamically accommodate Watson-Crick and Hoogsteen base-pairing, in which the purine base is flipped by ~180° degrees to adopt syn rather than anti conformation as in Watson-Crick base pairs. There is growing evidence that Hoogsteen base pairs play important roles in DNA replication, recognition, damage or mispair accommodation and repair. Here, we constructed a database for existing Hoogsteen base pairs in DNA duplexes by a structure-based survey from the Protein Data Bank, and structural analyses based on the resulted Hoogsteen structures revealed that Hoogsteen base pairs occur in a wide variety of biological contexts and can induce DNA kinking towards the major groove. As there were documented difficulties in modeling Hoogsteen or Watson-Crick by crystallography, we collaborated with the Richardsons’ lab and identified potential Hoogsteen base pairs that were mis-modeled as Watson-Crick base pairs which suggested that Hoogsteen can be more prevalent than it was thought to be. We developed solution NMR method combined with the site-specific isotope labeling to characterize the formation of, or conformational exchange with Hoogsteen base pairs in large DNA-protein complexes under solution conditions, in the absence of the crystal packing force. We showed that there are enhanced chemical exchange, potentially between Watson-Crick and Hoogsteen, at a sharp kink site in the complex formed by DNA and the Integration Host Factor protein. In stark contrast to B-form DNA, we found that Hoogsteen base pairs are strongly disfavored in A-form RNA duplex. Chemical modifications N1-methyl adenosine and N1-methyl guanosine that block Watson-Crick base-pairing, can be absorbed as Hoogsteen base pairs in DNA, but rather potently destabilized A-form RNA and caused helix melting. The intrinsic instability of Hoogsteen base pairs in A-form RNA endows the N1-methylation as a functioning post-transcriptional modification that was known to facilitate RNA folding, translation and potentially play roles in the epitranscriptome. On the other hand, the dynamic property of DNA that can accommodate Hoogsteen base pairs could be critical to maintaining the genome stability.