3 resultados para Phenomenon of disinterest
em Duke University
Resumo:
Despite knowing a familiar individual (such as a daughter) well, anecdotal evidence suggests that naming errors can occur among very familiar individuals. Here, we investigate the conditions surrounding these types of errors, or misnamings, in which a person (the misnamer) incorrectly calls a familiar individual (the misnamed) by someone else's name (the named). Across 5 studies including over 1,700 participants, we investigated the prevalence of the phenomenon of misnaming, identified factors underlying why it may occur, and tested potential mechanisms. We included undergraduates and MTurk workers and asked questions of both the misnamed and the misnamer. We find that familiar individuals are often misnamed with the name of another member of the same semantic category; family members are misnamed with another family member's name and friends are misnamed with another friend's name. Phonetic similarity between names also leads to misnamings; however, the size of this effect was smaller than that of the semantic category effect. Overall, the misnaming of familiar individuals is driven by the relationship between the misnamer, misnamed, and named; phonetic similarity between the incorrect name used by the misnamer and the correct name also plays a role in misnaming.
Resumo:
We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.
Resumo:
We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are negligible and to very general geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these parameters between generalized scattering states and guided slab modes. The perturbation of three coincident zeros-those of the dispersion relation for slab modes, the reflection constant, and the transmission constant-is central to calculating transmission anomalies both for lossless dielectric materials and for perfect metals.