7 resultados para Perturbation Problems

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between social rejection and growth in antisocial behavior was investigated. In Study 1,259 boys and girls (34% African American) were followed from Grades 1 to 3 (ages 6-8 years) to Grades 5 to 7 (ages 10-12 years). Early peer rejection predicted growth in aggression. In Study 2,585 boys and girls (16% African American) were followed from kindergarten to Grade 3 (ages 5-8 years), and findings were replicated. Furthermore, early aggression moderated the effect of rejection, such that rejection exacerbated antisocial development only among children initially disposed toward aggression. In Study 3, social information-processing patterns measured in Study 1 were found to mediate partially the effect of early rejection on later aggression. In Study 4, processing patterns measured in Study 2 replicated the mediation effect. Findings are integrated into a recursive model of antisocial development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Externalizing behavior problems of 124 adolescents were assessed across Grades 7-11. In Grade 9, participants were also assessed across social-cognitive domains after imagining themselves as the object of provocations portrayed in six videotaped vignettes. Participants responded to vignette-based questions representing multiple processes of the response decision step of social information processing. Phase 1 of our investigation supported a two-factor model of the response evaluation process of response decision (response valuation and outcome expectancy). Phase 2 showed significant relations between the set of these response decision processes, as well as response selection, measured in Grade 9 and (a) externalizing behavior in Grade 9 and (b) externalizing behavior in Grades 10-11, even after controlling externalizing behavior in Grades 7-8. These findings suggest that on-line behavioral judgments about aggression play a crucial role in the maintenance and growth of aggressive response tendencies in adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015, Institute of Mathematical Statistics. All rights reserved.In order to use persistence diagrams as a true statistical tool, it would be very useful to have a good notion of mean and variance for a set of diagrams. In [23], Mileyko and his collaborators made the first study of the properties of the Fréchet mean in (Dp, Wp), the space of persistence diagrams equipped with the p-th Wasserstein metric. In particular, they showed that the Fréchet mean of a finite set of diagrams always exists, but is not necessarily unique. The means of a continuously-varying set of diagrams do not themselves (necessarily) vary continuously, which presents obvious problems when trying to extend the Fréchet mean definition to the realm of time-varying persistence diagrams, better known as vineyards. We fix this problem by altering the original definition of Fréchet mean so that it now becomes a probability measure on the set of persistence diagrams; in a nutshell, the mean of a set of diagrams will be a weighted sum of atomic measures, where each atom is itself a persistence diagram determined using a perturbation of the input diagrams. This definition gives for each N a map (Dp)N→ℙ(Dp). We show that this map is Hölder continuous on finite diagrams and thus can be used to build a useful statistic on vineyards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant ('RI-LVL'), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.