1 resultado para Performance management systems
em Duke University
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (84)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (4)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (15)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (3)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (13)
- FUNDAJ - Fundação Joaquim Nabuco (6)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (5)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (6)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (35)
- Queensland University of Technology - ePrints Archive (174)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (5)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (10)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (49)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Scielo Uruguai (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (8)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (25)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universidade Metodista de São Paulo (2)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (28)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (7)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.