6 resultados para PROTECTED FAT
em Duke University
Resumo:
We report a new inkless catalytic muCP technique that achieves accurate, fast, and complete pattern reproduction on SAMs of Boc- and TBS-protected thiols immobilized on gold using a polyurethane-acrylate stamp functionalized with covalently bound sulfonic acids. Pattern transfer is complete at room temperature just after one minute of contact and renders sub-200 nm size structures of chemically differentiated SAMs.
Resumo:
OBJECTIVES: This study compared LDL, HDL, and VLDL subclasses in overweight or obese adults consuming either a reduced carbohydrate (RC) or reduced fat (RF) weight maintenance diet for 9 months following significant weight loss. METHODS: Thirty-five (21 RC; 14 RF) overweight or obese middle-aged adults completed a 1-year weight management clinic. Participants met weekly for the first six months and bi-weekly thereafter. Meetings included instruction for diet, physical activity, and behavior change related to weight management. Additionally, participants followed a liquid very low-energy diet of approximately 2092 kJ per day for the first three months of the study. Subsequently, participants followed a dietary plan for nine months that targeted a reduced percentage of carbohydrate (approximately 20%) or fat (approximately 30%) intake and an energy intake level calculated to maintain weight loss. Lipid subclasses using NMR spectroscopy were analyzed prior to weight loss and at multiple intervals during weight maintenance. RESULTS: Body weight change was not significantly different within or between groups during weight maintenance (p>0.05). The RC group showed significant increases in mean LDL size, large LDL, total HDL, large and small HDL, mean VLDL size, and large VLDL during weight maintenance while the RF group showed increases in total HDL, large and small HDL, total VLDL, and large, medium, and small VLDL (p<0.05). Group*time interactions were significant for large and medium VLDL (p>0.05). CONCLUSION: Some individual lipid subclasses improved in both dietary groups. Large and medium VLDL subclasses increased to a greater extent across weight maintenance in the RF group.
Resumo:
Marine protected areas (MPAs) are often implemented to conserve or restore species, fisheries, habitats, ecosystems, and ecological functions and services; buffer against the ecological effects of climate change; and alleviate poverty in coastal communities. Scientific research provides valuable insights into the social and ecological impacts of MPAs, as well as the factors that shape these impacts, providing useful guidance or "rules of thumb" for science-based MPA policy. Both ecological and social factors foster effective MPAs, including substantial coverage of representative habitats and oceanographic conditions; diverse size and spacing; protection of habitat bottlenecks; participatory decisionmaking arrangements; bounded and contextually appropriate resource use rights; active and accountable monitoring and enforcement systems; and accessible conflict resolution mechanisms. For MPAs to realize their full potential as a tool for ocean governance, further advances in policy-relevant MPA science are required. These research frontiers include MPA impacts on nontarget and wide-ranging species and habitats; impacts beyond MPA boundaries, on ecosystem services, and on resource-dependent human populations, as well as potential scale mismatches of ecosystem service flows. Explicitly treating MPAs as "policy experiments" and employing the tools of impact evaluation holds particular promise as a way for policy-relevant science to inform and advance science-based MPA policy. © 2011 Wiley Periodicals, Inc.
Resumo:
INTRODUCTION: Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency and immunophenotype of adult stem cells from a variety of tissues. MATERIALS AND METHODS: Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs) and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet-induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. RESULTS: Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased platelet-derived growth factor receptor α expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. CONCLUSIONS: These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.
Resumo:
Copyright © 2014 Elsevier Inc. All rights reserved.Understanding the impact of obesity on elective total joint arthroplasty (TJA) remains critical. Perioperative outcomes were reviewed in 316 patients undergoing primary TJA. Higher percent body fat (PBF) was associated with postoperative blood transfusion, increased hospital length of stay (LOS) >3 days, and discharge to an extended care facility while no significant differences existed for BMI. Additionally, PBF of 43.5 was associated with a 2.4× greater likelihood of blood transfusion, PBF of 36.5 with a 1.9× greater likelihood for LOS >3 days, and PBF of 36.0 with a 1.4× greater likelihood for discharge to an extended care facility. PBF may be a more effective measure than BMI to use in screening for perioperative risks and acute outcomes associated with obese total joint patients.