2 resultados para PROSTHETIC COMPLICATIONS
em Duke University
Resumo:
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.
Resumo:
Background. The optimum approach for infectious complication surveillance for cardiac implantable electronic device (CIED) procedures is unclear. We created an automated surveillance tool for infectious complications after CIED procedures. Methods. Adults having CIED procedures between January 1, 2005 and December 31, 2011 at Duke University Hospital were identified retrospectively using International Classification of Diseases, 9th revision (ICD-9) procedure codes. Potential infections were identified with combinations of ICD-9 diagnosis codes and microbiology data for 365 days postprocedure. All microbiology-identified and a subset of ICD-9 code-identified possible cases, as well as a subset of procedures without microbiology or ICD-9 codes, were reviewed. Test performance characteristics for specific queries were calculated. Results. Overall, 6097 patients had 7137 procedures. Of these, 1686 procedures with potential infectious complications were identified: 174 by both ICD-9 code and microbiology, 14 only by microbiology, and 1498 only by ICD-9 criteria. We reviewed 558 potential cases, including all 188 microbiology-identified cases, 250 randomly selected ICD-9 cases, and 120 with neither. Overall, 65 unique infections were identified, including 5 of 250 reviewed cases identified only by ICD-9 codes. Queries that included microbiology data and ICD-9 code 996.61 had good overall test performance, with sensitivities of approximately 90% and specificities of approximately 80%. Queries with ICD-9 codes alone had poor specificity. Extrapolation of reviewed infectious rates to nonreviewed cases yields an estimated rate of infection of 1.3%. Conclusions. Electronic queries with combinations of ICD-9 codes and microbiologic data can be created and have good test performance characteristics for identifying likely infectious complications of CIED procedures.