3 resultados para PROPORTIONAL HAZARD AND ACCELERATED FAILURE MODELS

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.

Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.

Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.

Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.

These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.

To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.

The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.