5 resultados para PLASMA-CELLS

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B-lymphocytes have traditionally been thought to contribute to immunity and autoimmune disease through terminal differentiation into plasma cells that secrete antibody. However, studies in mice and recent clinical studies have demonstrated that genetically altered B-cell function and B-cell-targeted therapies can significantly affect autoimmune diseases that were predominantly thought to be T-cell-mediated. B-cell depletion in mouse models of disease has also led to the identification of alternative B-cell effector functions that regulate normal immune responses and autoimmune disease. This review highlights multiple B-cell effector mechanisms, including the promotion of cellular immunity, the negative regulation of immune responses, and the production of pathogenic antibodies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural IgM (nIgM) is constitutively present in the serum, where it aids in the early control of viral and bacterial expansions. nIgM also plays a significant role in the prevention of autoimmune disease by promoting the clearance of cellular debris. However, the cells that maintain high titers of nIgM in the circulation had not yet been identified. Several studies have linked serum nIgM with the presence of fetal-lineage B cells, and others have detected IgM secretion directly by B1a cells in various tissues. Nevertheless, a substantial contribution of undifferentiated B1 cells to nIgM titers is doubtful, as the ability to produce large quantities of antibody (Ab) is a function of the phenotype and morphology of differentiated plasma cells (PCs). No direct evidence exists to support the claim that a B1-cell population directly produces the bulk of circulating nIgM. The source of nIgM thus remained uncertain and unstudied.

In the first part of this study, I identified the primary source of nIgM. Using enzyme-linked immunosorbent spot (ELISPOT) assay, I determined that the majority of IgM Ab-secreting cells (ASCs) in naïve mice reside in the bone marrow (BM). Flow cytometric analysis of BM cells stained for intracellular IgM revealed that nIgM ASCs express IgM and the PC marker CD138 on their surface, but not the B1a cell marker CD5. By spinning these cells onto slides and staining them, following isolation by fluorescence-activated cell sorting (FACS), I found that they exhibit the typical morphological characteristics of terminally differentiated PCs. Transfer experiments demonstrated that BM nIgM PCs arise from a progenitor in the peritoneal cavity (PerC), but not isolated PerC B1a, B1b, or B2 cells. Immunoglobulin (Ig) gene sequence analysis and examination of B1-8i mice, which carry an Ig knockin that prohibits fetal B-cell development, indicated that nIgM PCs differentiate from fetal-lineage B cells. BrdU uptake experiments showed that the nIgM ASC compartment contains a substantial fraction of long-lived plasma cells (LLPCs). Finally, I demonstrated that nIgM PCs occupy a survival niche distinct from that used by IgG PCs.

In the second part of this dissertation, I characterized the unique survival niche of nIgM LLPCs, which maintain constitutive high titers of nIgM in the serum. By using genetically deficient or Ab-depleted mice, I found that neither T cells, type 2 innate lymphoid cells, nor mast cells, the three major hematopoietic producers of IL-5, were required for nIgM PC survival in the BM. However, IgM PCs associate strongly with IL-5-expressing BM stromal cells, which support their survival in vitro when stimulated. In vivo neutralization of IL-5 revealed that, like individual survival factors for IgG PCs, IL-5 is not the sole supporter of IgM PCs, but is likely one of several redundant molecules that together ensure uninterrupted signaling. Thus, the long-lived nIgM PC niche is not composed of hematopoietic sources of IL-5, but a stromal cell microenvironment that provides multiple redundant survival signals.

In the final part of my study, I identified and characterized the precursor of nIgM PCs, which I found in the first project to be resident in the PerC, but not a B1a, B1b, or B2 cell. By transferring PerC cells sorted based on expression of CD19, CD5, and CD11b, I found that only the CD19+CD5+CD11b- population contained cells capable of differentiating into nIgM PCs. Transfer of decreasing numbers of unfractionated PerC cells into Rag1 knockouts revealed an order-of-magnitude drop in the rate of serum IgM reconstitution between stochastically sampled pools of 106 and 3x105 PerC cells, suggesting that the CD19+CD5+CD11b- compartment comprises two cell types, and that interaction between the two necessary for nIgM-PC differentiation. By transferring neonatal liver, I determined that the early hematopoietic environment is required for nIgM PC precursors to develop. Using mice carrying a mutation that disturbs cKit expression, I also found that cKit appears to be required at a critical point near birth for the proper development of nIgM PC precursors.

The collective results of these studies demonstrate that nIgM is the product of BM-resident PCs, which differentiate from a PerC B cell precursor distinct from B1a cells, and survive long-term in a unique survival niche created by stromal cells. My work creates a new paradigm by which to understand nIgM, B1 cell, and PC biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To characterize B-cell subsets in patients with muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). METHODS: In accordance with Human Immunology Project Consortium guidelines, we performed polychromatic flow cytometry and ELISA assays in peripheral blood samples from 18 patients with MuSK MG and 9 healthy controls. To complement a B-cell phenotype assay that evaluated maturational subsets, we measured B10 cell percentages, plasma B cell-activating factor (BAFF) levels, and MuSK antibody titers. Immunologic variables were compared with healthy controls and clinical outcome measures. RESULTS: As expected, patients treated with rituximab had high percentages of transitional B cells and plasmablasts and thus were excluded from subsequent analysis. The remaining patients with MuSK MG and controls had similar percentages of total B cells and naïve, memory, isotype-switched, plasmablast, and transitional B-cell subsets. However, patients with MuSK MG had higher BAFF levels and lower percentages of B10 cells. In addition, we observed an increase in MuSK antibody levels with more severe disease. CONCLUSIONS: We found prominent B-cell pathology in the distinct form of MG with MuSK autoantibodies. Increased BAFF levels have been described in other autoimmune diseases, including acetylcholine receptor antibody-positive MG. This finding suggests a role for BAFF in the survival of B cells in MuSK MG, which has important therapeutic implications. B10 cells, a recently described rare regulatory B-cell subset that potently blocks Th1 and Th17 responses, were reduced, which suggests a potential mechanism for the breakdown in immune tolerance in patients with MuSK MG.