2 resultados para PHYLOGENETIC FOOTPRINTS

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ontogeny of human empathy is better understood with reference to the evolutionary history of the social brain. Empathy has deep evolutionary, biochemical, and neurological underpinnings. Even the most advanced forms of empathy in humans are built on more basic forms and remain connected to core mechanisms associated with affective communication, social attachment, and parental care. In this paper, we argue that it is essential to consider empathy within a neurodevelopmental framework that recognizes both the continuities and changes in socioemotional understanding from infancy to adulthood. We bring together neuroevolutionary and developmental perspectives on the information processing and neural mechanisms underlying empathy and caring, and show that they are grounded in multiple interacting systems and processes. Moreover, empathy in humans is assisted by other abstract and domain-general high-level cognitive abilities such as executive functions, mentalizing and language, as well as the ability to differentiate another's mental states from one's own, which expand the range of behaviors that can be driven by empathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals.