9 resultados para PHOSPHOLIPID TRANSFER PROTEIN

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a "pseudosubstrate" mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vein grafting results in the development of intimal hyperplasia with accompanying changes in guanine nucleotide-binding (G) protein expression and function. Several serum mitogens that act through G protein-coupled receptors, such as lysophosphatidic acid, stimulate proliferative pathways that are dependent on the G protein betagamma subunit (Gbetagamma)-mediated activation of p21ras. This study examines the role of Gbetagamma signaling in intimal hyperplasia by targeting a gene encoding a specific Gbetagamma inhibitor in an experimental rabbit vein graft model. This inhibitor, the carboxyl terminus of the beta-adrenergic receptor kinase (betaARK(CT)), contains a Gbetagamma-binding domain. Vein graft intimal hyperplasia was significantly reduced by 37% (P<0.01), and physiological studies demonstrated that the normal alterations in G protein coupling phenotypically seen in this model were blocked by betaARK(CT) treatment. Thus, it appears that Gbetagamma-mediated pathways play a major role in intimal hyperplasia and that targeting inhibitors of Gbetagamma signaling offers novel intraoperative therapeutic modalities to inhibit the development of vein graft intimal hyperplasia and subsequent vein graft failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring beta-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular beta-adrenergic signaling defects including down-regulation of myocardial beta-adrenergic receptors (beta-ARs), functional beta-AR uncoupling, and an up-regulation of the beta-AR kinase (betaARK1). Adenoviral-mediated gene transfer of the human beta2-AR or an inhibitor of betaARK1 to these failing myocytes led to the restoration of beta-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of betaARK1 activity in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase is an enzyme, possibly analogous to rhodopsin kinase, that multiply phosphorylates the beta-adrenergic receptor only when it is occupied by stimulatory agonists. Since this kinase may play an important role in mediating the process of homologous, or agonist-specific, desensitization, we investigated the functional consequences of receptor phosphorylation by the kinase and possible analogies with the mechanism of action of rhodopsin kinase. Pure hamster lung beta 2-adrenergic receptor, reconstituted in phospholipid vesicles, was assessed for its ability to mediate agonist-promoted stimulation of the GTPase activity of coreconstituted stimulatory guanine nucleotide-binding regulatory protein. When the receptor was phosphorylated by partially (approximately 350-fold) purified preparations of beta-adrenergic receptor kinase, as much as 80% inactivation of its functional activity was observed. However, the use of more highly purified enzyme preparations led to a dramatic decrease in the ability of phosphorylation to inactivate the receptor such that pure enzyme preparations (approximately 20,000-fold purified) caused only minimal (approximately 1off/- 7%) inactivation. Addition of pure retinal arrestin (48-kDa protein or S antigen), which is involved in enhancing the inactivating effect of rhodopsin phosphorylation by rhodopsin kinase, led to partial restoration of the functional effect of beta-adrenergic receptor kinase-promoted phosphorylation (41 +/- 3% inactivation). These results suggest the possibility that a protein analogous to retinal arrestin may exist in other tissues and function in concert with beta-adrenergic receptor kinase to regulate the activity of adenylate cyclase-coupled receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonist-promoted desensitization of adenylate cyclase is intimately associated with phosphorylation of the beta-adrenergic receptor in mammalian, avian, and amphibian cells. However, the nature of the protein kinase(s) involved in receptor phosphorylation remains largely unknown. We report here the identification and partial purification of a protein kinase capable of phosphorylating the agonist-occupied form of the purified beta-adrenergic receptor. The enzyme is prepared from a supernatant fraction from high-speed centrifugation of lysed kin- cells, a mutant of S49 lymphoma cells that lacks a functional cAMP-dependent protein kinase. The beta-agonist isoproterenol induces a 5- to 10-fold increase in receptor phosphorylation by this kinase, which is blocked by the antagonist alprenolol. Fractionation of the kin- supernatant on molecular-sieve HPLC and DEAE-Sephacel results in a 50- to 100-fold purified beta-adrenergic receptor kinase preparation that is largely devoid of other protein kinase activities. The kinase activity is insensitive to cAMP, cGMP, cAMP-dependent kinase inhibitor, Ca2+-calmodulin, Ca2+-phospholipid, and phorbol esters and does not phosphorylate general kinase substrates such as casein and histones. Phosphate appears to be incorporated solely into serine residues. The existence of this novel cAMP-independent kinase, which preferentially phosphorylates the agonist-occupied form of the beta-adrenergic receptor, suggests a mechanism that may explain the homologous or agonist-specific form of adenylate cyclase desensitization. It also suggests a general mechanism for regulation of receptor function in which only the agonist-occupied or "active" form of the receptor is a substrate for enzymes inducing covalent modification.