5 resultados para PERIPHERAL VASCULAR DISEASE

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7 day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7 day patency rates of 88-89% and 28 day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trauma care in the general population has largely become protocol-driven, with an emphasis on fast and efficient treatment, good team communication at all levels of care including prehospital care, initial resuscitation, intensive care, and rehabilitation. Most available literature on trauma care has focused on adults, allowing the potential to apply concepts from adult care to pediatric care. But there remain issues that will always be specific to pediatric patients that may not translate from adults. Several new devices such as intraosseous (IO) needle systems and techniques such as ultrasonography to cannulate central and peripheral veins have become available for integration into our pre-existing trauma care system for children. This review will focus specifically on the latest techniques and evidence available for establishing intravenous access, rational approaches to fluid resuscitation, and blood product transfusion in the pediatric trauma patient.