1 resultado para PDO, hyperbolic fibration
em Duke University
Filtro por publicador
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (27)
- CentAUR: Central Archive University of Reading - UK (26)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (4)
- DigitalCommons - The University of Maine Research (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eScholarship Repository - University of California (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (11)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (106)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (4)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (12)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (2)
- Université de Montréal, Canada (6)
- University of Michigan (7)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (32)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.