2 resultados para PBL tutorial background clinical information needs

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Because most developing countries lack sufficient resources and infrastructure to conduct population-based studies on childhood blindness, it can be difficult to obtain epidemiologically reliable data available for planning public health strategies to effectively address the major determinants of childhood blindness. The major etiologies of blindness can differ regionally and intra-regionally. The objective of this retrospective study was to determine (1) the major causes of childhood blindness (BL) and severe visual impairment (SVI) in students who attend Wa Methodist School for the Blind in Upper West Region, North Ghana, and (2) any potential temporal trends in the causes of blindness for this region.

Methods: In this retrospective study, demographic data and clinical information from an eye screening at Wa Methodist School for the Blind were coded according to the World Health Organization/Prevention of Blindness standardized reporting methodology. Causes of BL and SVI were categorized anatomically and etiologically. We determined the major causes of BL/SVI over time using information provided about the age at onset of visual loss for each student.

Results: The major anatomical causes of BL/SVI among the 190 students screened were corneal opacity and phthisis bulbi (n=28, 15%), optic atrophy (n=23, 13%), glaucoma (n=18, 9%), microphthalmos (n=18, 9%), and cataract (n=18, 9%). Within the first year of life, students became blind mainly due to whole globe causes (n=23, 26%), cataract (n=15, 17%), and optic atrophy (n=11, 13%). Those who became blind after age one year had whole globe causes (n=26, 26%), corneal opacity (n=24, 24%), and optic atrophy (n=13, 13%).

Conclusion: At the Wa Methodist School for the Blind, the major anatomical causes of BL/SVI were corneal opacity and phthisis bulbi. About half of all students became blind within the first year of life, and were disproportionately affected by cataract and retinal causes in comparison to the other students who became blind after age one year. While research in blind schools has a number of implicit disadvantages and limitations, considering the temporal trends and other epidemiological factors of blindness may increase the usefulness and/or implications of the data that come from blind school studies in order to improve screening methods for newborns in hospitals and primary care centers, and to help tailor preventative and treatment programs to reduce avoidable childhood blindness in neonates and schoolchildren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. METHODS: The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. RESULTS: The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). CONCLUSIONS: This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally induced TFD through PNB.