3 resultados para PARAMETER-ESTIMATION
em Duke University
Resumo:
We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.
Resumo:
Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.
While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.
For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.