4 resultados para Open-loop speed control
em Duke University
Resumo:
BACKGROUND: Road traffic injuries (RTIs) are a growing but neglected global health crisis, requiring effective prevention to promote sustainable safety. Low- and middle-income countries (LMICs) share a disproportionately high burden with 90% of the world's road traffic deaths, and where RTIs are escalating due to rapid urbanization and motorization. Although several studies have assessed the effectiveness of a specific intervention, no systematic reviews have been conducted summarizing the effectiveness of RTI prevention initiatives specifically performed in LMIC settings; this study will help fill this gap. METHODS: In accordance with PRISMA guidelines we searched the electronic databases MEDLINE, EMBASE, Scopus, Web of Science, TRID, Lilacs, Scielo and Global Health. Articles were eligible if they considered RTI prevention in LMICs by evaluating a prevention-related intervention with outcome measures of crash, RTI, or death. In addition, a reference and citation analysis was conducted as well as a data quality assessment. A qualitative metasummary approach was used for data analysis and effect sizes were calculated to quantify the magnitude of emerging themes. RESULTS: Of the 8560 articles from the literature search, 18 articles from 11 LMICs fit the eligibility and inclusion criteria. Of these studies, four were from Sub-Saharan Africa, ten from Latin America and the Caribbean, one from the Middle East, and three from Asia. Half of the studies focused specifically on legislation, while the others focused on speed control measures, educational interventions, enforcement, road improvement, community programs, or a multifaceted intervention. CONCLUSION: Legislation was the most common intervention evaluated with the best outcomes when combined with strong enforcement initiatives or as part of a multifaceted approach. Because speed control is crucial to crash and injury prevention, road improvement interventions in LMIC settings should carefully consider how the impact of improvements will affect speed and traffic flow. Further road traffic injury prevention interventions should be performed in LMICs with patient-centered outcomes in order to guide injury prevention in these complex settings.
Resumo:
© 2015 IEEE.We consider a wireless control architecture with multiple control loops over a shared wireless medium. A scheduler observes the random channel conditions that each control system experiences over the shared medium and opportunistically selects systems to transmit at a set of non-overlapping frequencies. The transmit power of each system also adapts to channel conditions and determines the probability of successfully receiving and closing the loop. We formulate the optimal design of channel-aware scheduling and power allocation that minimize the total power consumption while meeting control performance requirements for all systems. In particular, it is required that for each control system a given Lyapunov function decreases at a specified rate in expectation over the random channel conditions. We develop an offline algorithm to find the optimal communication design, as well as an online protocol which selects scheduling and power variables based on a random observed channel sequence and converges almost surely to the optimal operating point. Simulations illustrate the power savings of our approach compared to other non-channel-aware schemes.
Resumo:
Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.
Resumo:
This chapter presents a model averaging approach in the M-open setting using sample re-use methods to approximate the predictive distribution of future observations. It first reviews the standard M-closed Bayesian Model Averaging approach and decision-theoretic methods for producing inferences and decisions. It then reviews model selection from the M-complete and M-open perspectives, before formulating a Bayesian solution to model averaging in the M-open perspective. It constructs optimal weights for MOMA:M-open Model Averaging using a decision-theoretic framework, where models are treated as part of the ‘action space’ rather than unknown states of nature. Using ‘incompatible’ retrospective and prospective models for data from a case-control study, the chapter demonstrates that MOMA gives better predictive accuracy than the proxy models. It concludes with open questions and future directions.