3 resultados para Open clusters and associations: individual: 30 Doradus
em Duke University
Resumo:
In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others(1), ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.
Resumo:
The intensity and valence of 30 emotion terms, 30 events typical of those emotions, and 30 autobiographical memories cued by those emotions were each rated by different groups of 40 undergraduates. A vector model gave a consistently better account of the data than a circumplex model, both overall and in the absence of high-intensity, neutral valence stimuli. The Positive Activation - Negative Activation (PANA) model could be tested at high levels of activation, where it is identical to the vector model. The results replicated when ratings of arousal were used instead of ratings of intensity for the events and autobiographical memories. A reanalysis of word norms gave further support for the vector and PANA models by demonstrating that neutral valence, high-arousal ratings resulted from the averaging of individual positive and negative valence ratings. Thus, compared to a circumplex model, vector and PANA models provided overall better fits.
Economic and Social Upgrading in Global Value Chains and Industrial Clusters: Why Governance Matters
Resumo:
© 2014, Springer Science+Business Media Dordrecht.The burgeoning literature on global value chains (GVCs) has recast our understanding of how industrial clusters are shaped by their ties to the international economy, but within this context, the role played by corporate social responsibility (CSR) continues to evolve. New research in the past decade allows us to better understand how CSR is linked to industrial clusters and GVCs. With geographic production and trade patterns in many industries becoming concentrated in the global South, lead firms in GVCs have been under growing pressure to link economic and social upgrading in more integrated forms of CSR. This is leading to a confluence of “private governance” (corporate codes of conduct and monitoring), “social governance” (civil society pressure on business from labor organizations and non-governmental organizations), and “public governance” (government policies to support gains by labor groups and environmental activists). This new form of “synergistic governance” is illustrated with evidence from recent studies of GVCs and industrial clusters, as well as advances in theorizing about new patterns of governance in GVCs and clusters.