3 resultados para Nonlinear correlation coefficients
em Duke University
Resumo:
Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression.
Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a Gaussian RBF function, along with various parameters, such as the size of the epsilon insensitive region and the cost parameter (C) that are used to control the amount of error tolerated by the model. The predictor variables for the SVM model consisted of the actual survival time of the patient, the number of brain metastases, the graded prognostic assessment (GPA) and Karnofsky Performance Scale (KPS) scores, prescription dose, and the largest planning target volume (PTV). The response of the model is the survival time of the patient. The resulting survival time predictions were analyzed against the actual survival times by single parameter classification and two-parameter classification. The predicted mean survival times within each classification were compared with the actual values to obtain the confidence interval associated with the model’s predictions. In addition to visualizing the data on plots using the means and error bars, the correlation coefficients between the actual and predicted means of the survival times were calculated during each step of the classification.
Results: The number of metastases and KPS scores, were consistently shown to be the strongest predictors in the single parameter classification, and were subsequently used as first classifiers in the two-parameter classification. When the survival times were analyzed with the number of metastases as the first classifier, the best correlation was obtained for patients with 3 metastases, while patients with 4 or 5 metastases had significantly worse results. When the KPS score was used as the first classifier, patients with a KPS score of 60 and 90/100 had similar strong correlation results. These mixed results are likely due to the limited data available for patients with more than 3 metastases or KPS scores of 60 or less.
Conclusions: The number of metastases and the KPS score both showed to be strong predictors of patient survival time. The model was less accurate for patients with more metastases and certain KPS scores due to the lack of training data.
Resumo:
Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.
In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.
Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.
Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.
Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.
To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.
The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.
This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.
Resumo:
Recent work has demonstrated the strong qualitative differences between the dynamics near a glass transition driven by short-ranged repulsion and one governed by short-ranged attraction. Here, we study in detail the behavior of non-linear, higher-order correlation functions that measure the growth of length scales associated with dynamical heterogeneity in both types of systems. We find that this measure is qualitatively different in the repulsive and attractive cases with regards to the wave vector dependence as well as the time dependence of the standard non-linear four-point dynamical susceptibility. We discuss the implications of these results for the general understanding of dynamical heterogeneity in glass-forming liquids.